Machine

Leanning for

Physicistis
Summer 2017
University of Erlangen-Nuremberg
Florian Marquardt
Florian.Marquardt@fau.de http://machine-learning-for-physicists.org

Part One

OUTPUT

INPUT

OUTPUT

(drawing by Ramon y Cajal, ~1900)

OUTPUT

INPUT

"light bulb"

(this particular picture has never been seen before!)

"light bulb"

ImageNet competition

1.2 million training pictures (annotated by humans) 1000 object classes

2012: A deep neural network beats competition clearly (16\% error rate; since then rapid decrease of error rate, down to about 7\%)

Picture:"ImageNet Large Scale Visual Recognition Challenge", Russakovsky et al. 2014

Example applications of (deep) neural networks

Recognize images
Describe images in sentences
Colorize images
Translate languages (French to Spanish, etc.)
Answer questions about a brief text
Play video games \& board games at superhuman level
(in physics:)
predict properties of materials
classify phases of matter
represent quantum wave functions

Lectures Outline

- Basic structure of artificial neural networks
- Training a network (backpropagation)
- Exploiting translational invariance in image processing (convolutional networks)
- Unsupervised learning of essential features (autoencoders)
- Learning temporal data, e.g. sentences (recurrent networks)
- Learning a probability distribution (Boltzmann machine)
- Learning from rare rewards (reinforcement learning)
- Further tricks and concepts
- Modern applications to physics and science
- Basic structur neural networks

Python

- Expl oll ational invariance in image processing crvised learning of essential featu
- Learning temporal data, e.g. sentences

Keras package for Python

- Learning a probability distribution
- Learning from rare rewards
- Further tricks and concepts
- Modern applications to physics and science

Homework

Homework: (usually) explore via programming

We provide feedback if desired

No regular tutorial sessions

Original site:
http://www.thp2.nat.uni-erlangen.de/index.php/
2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt
New site:
http://machine-learning-for-physicists.org

Homework

First homework:
I.Install python \& keras on your computer (see lecture homepage); questions will be resolved after second lecture THIS IS IMPORTANT!
2.Brainstorm:"Which problems could you address using neural networks?"

Very brief history of artificial neural networks

"Recurrent networks"
"Convolutional networks"
Deep nets for image recognition
"Perceptrons"
80s/90s beat the competition 50s/60s
"Backpropagation
80 s (*1970)
1956 Dartmouth
Workshop on
Artificial Intelligence
early 2000s
"Deep networks"
become practical
2015
A deep net reaches expert level in "Go"

Lots of tutorials/info on the web...
recommend:
online book by Nielsen ("Neural Networks and Deep
Learning") at https://neuralnetworksanddeeplearning.com
much more detailed book:
"Deep Learning" by Goodfellow, Bengio, Courville; MIT press; see also http://www.deeplearningbook.org

Software here: python \& keras (builds on theano)

A neural network

$=$ a nonlinear function (of many variables) that depends on many parameters

A neural network

output layer

output of a neuron $=$ nonlinear function of weighted sum of inputs

output of a neuron $=$ nonlinear function of weighted sum of inputs
weighted sum
$z=\sum w_{j} y_{j}+b \quad$ output value (offset, "bias")
output of a neuron $=$ nonlinear function of weighted sum of inputs
weighted sum

output value

A neural network

output layer

input layer
The values of input layer neurons are fed into the network from the outside

"feedforward"
pass through the network: calculate output from input
"feedforward"
pass through the network: calculate output from input
"feedforward"
pass through the network: calculate output from input

One layer

output

input

j=output neuron
$\mathrm{k}=$ input neuron

$$
z_{j}=\sum_{k} w_{j k} y_{k}^{\mathrm{in}}+b_{j}
$$

in matrix/vector notation:

$$
z=w y^{\text {in }}+b
$$

elementwise nonlinear function:

$$
y_{j}^{\mathrm{out}}=f\left(z_{j}\right)
$$

Jupyter MachineLearning_Basics (autosaved)

A very simple neural network (input to output)

In [494]: from numpy import * \# get the "numpy" library for linear algebra

In [495]: N0=3 \# input layer size
N1=2 \# output layer size
w=random.uniform(low=-1,high=+1,size=(N1,N0)) \# random weights: N1xNO
$\mathrm{b}=\mathrm{random} . u n i f o r m(l o w=-1, h i g h=+1, s i z e=\mathrm{N} 1)$ \# biases: N1 vector

In [496]: Y_in=array([0.2,0.4,-0.1]) \# input values

In [498]: $z=\operatorname{dot}\left(w, y _i n\right)+b$ \# result: the vector of ' z ' values, length N1

A few lines of"python"!

$$
z_{j}=\sum_{k} w_{j k} y_{k}^{\mathrm{in}}+b_{j}
$$

in matrix/vector notation:

$$
z=w y^{\mathrm{in}}+b
$$

A few lines of"python"!

output

input


```
N0=3 # input layer size
N1=2 # output layer size
w=random.uniform(low=-1,high=+1,size=(N1,N0)) # random weights: N1xN0
b=random.uniform(low=-1,high=+1,size=N1) # biases: N1 vector
y_in=array([0.2,0.4,-0.1]) # input values
    Input values
z=dot(w,y_in)+b # result: the vector of 'z' values, length N1
y_out=1/(1+exp(-z)) # the sigmoid function (applied elementwise)
```

A basic network (without hidden layer)

$$
z=w_{1} y_{1}+w_{2} y_{2}+b
$$

Processing batches: Many samples in parallel

sample I
sample 2

Avoid loops! (slow)
sample 3

Processing batches: Many samples in parallel

one sample:

$$
\text { vector }\left(\mathrm{N}_{\text {in }}\right)
$$

y
many samples:
matrix $\left(N_{\text {samples }} \times N_{\text {in }}\right) \quad y$
Apply matrix/vector operations to operate on all samples simultaneously! Avoid loops! (slow)

Note: Python interprets $\mathbf{M}=\mathbf{A}+\mathbf{b}$

$$
\begin{array}{cc}
& \text { matrix }\left(\mathrm{N}_{1} \times \mathrm{N}_{2}\right) \\
\text { as: } & M_{i j}=A_{i j}+b_{j}
\end{array}
$$

First index of \mathbf{b} is 'expanded' to size indicated by \mathbf{A}

Processing batches: Many samples in parallel

one sample:
$\operatorname{vector}\left(N_{\text {out }}\right) \frac{\mathbf{z}=\boldsymbol{\operatorname { d o t }}(\mathbf{w}, \mathbf{y})+\mathbf{b}}{\substack{- \\ \text { matrix }\left(N_{\text {out }} \times N_{\text {in }}\right) \text { vector }\left(N_{\text {out }}\right)}}$
many samples:
matrix ($\mathrm{N}_{\text {samples }} \times \mathrm{N}_{\text {in }}$)
matrix
$\left(N_{\text {samples }} \times N_{\text {out }}\right) \quad \mathbf{z}=\boldsymbol{d o t}(\mathbf{y}, \mathbf{w})+\mathbf{b}$
matrix $\left(\mathrm{N}_{\text {in }} \times \mathrm{N}_{\text {out }}\right) \quad$ becomes
$\mathrm{N}_{\text {samples }} \times \mathrm{N}_{\text {out }}$

We can create complicated functions...

..but can we create arbitrary functions?

Approximating an arbitrary nonlinear function

$F(y)$

Approximating an arbitrary nonlinear function

$$
\sim
$$

$$
y_{\text {out }}=\delta F_{1} f\left(w \cdot\left(y-Y_{1}\right)\right)+\delta F_{2} f\left(w \cdot\left(y-Y_{2}\right)\right)
$$

(f = sigmoid = smooth step)

Approximating an arbitrary 2D nonlin. function

First step: create quarterspace "step function"

Yout

AND
for large w :

Figure out how to implement the following operations using a neural network:

OR
XOR (gives 1 only if inputs are different, i.e. for 10 and 01)

Approximating an arbitrary 2D nonlin. function

yout

AND

step in y_{1}

step in y_{2}

$$
f\left(w \cdot\left(y_{1}-\bar{y}_{1}\right)\right) \quad f\left(w \cdot\left(y_{2}-\bar{y}_{2}\right)\right)
$$

Approximating an arbitrary 2D nonlin. function

Universality of neural networks

Any arbitrary (smooth) function (with vector input and vector output) can be approximated as well as desired by a neural network with a single (!) hidden layer.
(as long as we allow for sufficiently many neurons)

Figure out how to implement a 2D function that produces a (smoothened) square

Bonus version: how to get an arbitrary convex shape (approximately)?

Implement them on the computer and play around...

Extra * bonus version:
We have indicated how to approximate arbitrary functions in 2D using 2 hidden layers (with our AND construction, and summing up in the end)

Can you do it with a single hidden layer?

A neural network

OUTPUT

output layer

OUTPUT

Complicated nonlinear

 function that depends on$=$ all the weights and biases

$$
y^{\mathrm{out}}=F_{w}\left(y^{\mathrm{in}}\right)
$$

Note:When we write " w " as subscript of F, we mean all the weights and also biases Note:When we write "yout", we mean the whole vector of output values

How to choose the weights (and biases) ?

By "training" with thousands of examples!

This is essentially nonlinear curve fitting!

Example for one output neuron and one input neuron

$y^{\text {out }} \uparrow \quad$ curve depends on parameters w
$y^{\text {out }}=F_{w}\left(y^{\text {in }}\right) \quad$ adjust $w!$
training examples
$=$ known data points
y^{in}

Challenge:
Curve fitting with a million parameters!
maybe 1000s of input neurons (dimension of $y^{i n}$) many 1000s of hidden layer neurons
millions of weights
need at least tens of thousands (or more) examples

Goal:Adapt weights to get closer to the "correct" answer (provided by the trainer)

http://www.thp2.nat.uni-erlangen.de/index.php/ 2017_Machine_Learning_for_Physicists,__by_Florian_Marquardt

Lecture Notes and Files [edit]

- PDF Slides Lecture 1 (8.5.2017)
- PDF Slides Lecture 2 v2 (11.5.2017)
- PDF The Python Cheat Sheet (many useful examples, on 2 pages)
- python code for visualizing the output of a multilayer network (demonstrates batch processing and produces a nice picture)
- PDF Slides Lecture 3 v3 (22.5.2017)

$$
\begin{aligned}
& \text { Machine } \\
& \text { Learning for } \\
& \text { Physicists } \\
& \text { Lecture 3 }
\end{aligned}
$$

A neural network

OUTPUT

output layer

OUTPUT

Complicated nonlinear

 function that depends on$=$ all the weights and biases

$$
y^{\mathrm{out}}=F_{w}\left(y^{\mathrm{in}}\right)
$$

Note:When we write " w " as subscript of F, we mean all the weights and also biases Note:When we write "yout", we mean the whole vector of output values

We have:

$$
\begin{gathered}
y^{\text {out }}=\underset{w}{F_{w}\left(y^{\text {in }}\right)} \\
\text { neural network } \\
\text { (where also stands for the biases) }
\end{gathered}
$$

We would like: $\quad y^{\text {out }} \approx \underset{\mid}{F}\left(y^{\text {in }}\right)$

desired "target" function

Cost function measures deviation:

$$
C(w)=\frac{1}{2}\left\langle\left\|F_{w}\left(y^{\text {in }}\right)-F\left(y^{\text {in }}\right)\right\|^{2}\right\rangle
$$

Approximate version, for N samples:

$$
C(w) \approx \frac{1}{2} \frac{1}{N} \sum_{s=1}^{N}\left\|F_{w}\left(y^{(s)}\right)-F\left(y_{\mid}^{(s)}\right)\right\|^{2}
$$ s=index of sample

$$
y^{y^{\text {out }} \uparrow=F_{w}\left(y^{\text {in }}\right)}
$$

[^0]Minimizing C for this case:"least-squares fitting"!

Method:"Sliding down the hill" ("gradient descent")

$$
\dot{w} \sim-\nabla_{w} C(w)
$$

$C(w)$
physicist would say:
motion of an overdamped particle (velocity set by force)

Stochastic Gradient Descent

Problem: Evaluating C would mean averaging over ALL training samples
Solution: Only average over a few samples, get approximate C
Discrete steps: for each step evaluate a few samples and update weights according to:

$$
\left.w_{j} \mapsto w_{j}-\eta \frac{\partial \tilde{C}(w)}{\partial w_{j}} \begin{array}{c}
\text { (take different } \\
\text { samples in } \\
\text { sersion of } \mathrm{C} \\
\text { each step! }
\end{array}\right)
$$

stepsize parameter
(Note: just as before, the biases b are included here, think of them as extra parameters w)
(C smaller)

Stochastic gradient de

For sufficiently small steps: sum over many steps approximates true gradient (because it is an additional average)

It's time to use the chain rule!

(image:Wikimedia)

Small network: Calculate derivative of cost function "by hand"

OUTPUT $f(z)$

$$
\begin{gathered}
z=w_{1} y_{1}+w_{2} y_{2}+b \\
C(w)=\frac{1}{2}\left\langle\left(\begin{array}{c}
\text { cost } \\
\text { network desired output } \\
\text { output }
\end{array}\right.\right.
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial C}{\partial w_{1}}=\left\langle(f(z)-F) f^{\prime}(z) \frac{\partial z}{\partial w_{1}}\right\rangle \\
\frac{\partial z}{\partial w_{1}}=y_{1}
\end{gathered}
$$

Backpropagation

Now for the full network!

Need to keep track of indices carefully:
$y_{j}^{(n)} \quad$ Value of neuron j in layer n
$z_{j}^{(n)} \quad$ Input value for " $y=f(z) "$
$w_{j k}^{n, n-1}$ Weight (neuron k in layer $\mathrm{n}-1$ feeding into neuron j in layer n)

Backpropagation

We have: $\quad C(w)=\left\langle\underline{C\left(w, y^{\text {in }}\right)}\right\rangle$
cost value for one particular input
We get:
$\frac{\partial C\left(w, y^{\mathrm{in}}\right)}{\partial w_{*}}=\sum_{j}\left(y_{j}^{(n)}-F_{j}\left(y^{\mathrm{in}}\right)\right) \frac{\partial y_{j}^{(n)}}{\partial w_{*}}$

$$
=\sum_{j}\left(y_{j}^{(n)}-F_{j}\left(y^{\mathrm{in}}\right)\right) f^{\prime}\left(z_{j}^{(n)}\right) \frac{\partial z_{j}^{(n)}}{\partial w_{*}}
$$

some weight (or bias), somewhere in the net
(we used:)

$$
y_{j}^{(n)}=f\left(z_{j}^{(n)}\right)
$$

Backpropagation

Apply chain rule repeatedly

We want: Change of neuron j in layer n due to change of some arbitrary weight w_{*} :

$$
\begin{aligned}
\frac{\partial z_{j}^{(n)}}{\partial w_{*}} & =\sum_{k} \frac{\partial z_{j}^{(n)}}{\partial y_{k}^{(n-1)}} \frac{\partial y_{k}^{(n-1)}}{\partial w_{*}} \\
& =\sum_{k} w_{j k}^{n, n-1} f^{\prime}\left(z_{k}^{(n-1)}\right) \frac{\partial z_{k}^{(n-1)}}{\partial w_{*}}
\end{aligned}
$$

Backpropagation

$$
\frac{\partial z_{j}^{(n)}}{\partial w_{*}}=\sum_{k} w_{j k}^{n, n-1} f^{\prime}\left(z_{k}^{(n-1)}\right) \frac{\partial z_{k}^{(n-1)}}{\partial w_{*}}
$$

Important insight: Each pair of layers [n,n-I] contributes multiplication with the following matrix:

$$
M_{j k}^{(n, n-1)}=w_{j k}^{(n, n-1)} f^{\prime}\left(z_{k}^{(n-1)}\right)
$$

Backpropagation

Repeated matrix multiplication, going down the net:

$$
\frac{\partial z_{j}^{(n)}}{\partial w_{*}}=\sum_{k, l, \ldots, u, v} M_{j k}^{n, n-1} M_{k l}^{n-1, n-2} \ldots M_{u v}^{\tilde{n}+1, \tilde{n}} \frac{\partial z_{v}^{(\tilde{n})}}{\partial w_{*}}
$$

Backpropagation

What happens when we finally encounter the weight with respect to which we wanted to calculate the derivative of the cost function?
If W_{*} was really a weight:

$$
w_{*} \quad \frac{\partial w_{j k}^{\tilde{n}, \tilde{n}-1}}{}=y_{k}^{(\tilde{n}-1)}
$$

...if it was a bias:

$$
\frac{\partial z_{j}^{(\tilde{n})}}{\partial b_{j}^{\tilde{n}}}=1
$$

Backpropagation

We have:

$$
C(w)=\left\langle\underline{C\left(w, y^{\mathrm{in}}\right)}\right\rangle
$$

cost value for one particular input
In total, we get:

$$
\begin{aligned}
\frac{\partial C\left(w, y^{\mathrm{in}}\right)}{\partial w_{*}} & =\sum_{j}\left(y_{j}^{(n)}-F_{j}\left(y^{\mathrm{in}}\right)\right) \frac{\partial y_{j}^{(n)}}{\partial w_{*}} \\
& =\sum_{j}\left(y_{j}^{(n)}-F_{j}\left(y^{\mathrm{in}}\right)\right) f^{\prime}\left(z_{j}^{(n)}\right) \frac{\partial z_{j}^{(n)}}{\partial w_{*}}
\end{aligned}
$$

How to evaluate this: construct vector for output layer n, and then multiply with matrices from the right (as shown above)

Backpropagation

Summary

Initialize vector from output layer:

$$
\Delta_{j}=\left(y_{j}^{n}-F_{j}\left(y^{\mathrm{in}}\right)\right) f^{\prime}\left(z_{j}^{n}\right)
$$

2 For each layer: store outcomes (cost derivatives) for all weights and biases W_{*} in that layer

$$
\frac{\partial C\left(w, y^{\mathrm{in}}\right)}{\partial w_{*}}=\Delta_{j} \frac{\partial z_{j}^{(\operatorname{lseg}}}{\partial w_{*}}
$$

(j is the index where this particular weight appears)
3 Multiply vector by matrix

$$
\Delta_{k}^{\text {new }}=\sum_{j} \Delta_{j} M_{(\text {see above for M) }}^{n, n-1}
$$

(\& return to step 2)

Backpropagation

Very efficient: One single backpropagation pass through the network yields ALL the derivatives of C with respect to all the weights and biases!

No more effort than forward propagation!

Huge ("million-fold") advantage over naive approach of calculating numerically derivatives for all weights individually!

Backpropagation

Physical intuitive picture:

Backpropagation

In each layer:

$$
\frac{\partial C\left(w, y^{\mathrm{in}}\right)}{\partial w_{*}}=\Delta_{j} \frac{\partial z_{j}^{(n)}}{\partial w_{*}}
$$

Weight:

Bias:

$$
\frac{\partial z_{j}^{(n)}}{\partial w_{j k}^{n, n-1}}=y_{k}^{(n-1)}
$$

$$
\frac{\partial z_{j}^{(n)}}{\partial b_{j}^{n}}=1
$$

- Averaging over samples:

$$
\frac{\partial C(w)}{\partial w_{j k}^{n, n-1}}=\left\langle\Delta_{j} y_{k}^{(n-1)}\right\rangle \quad \frac{\partial C(w)}{\partial b_{j}^{n}}=\left\langle\Delta_{j}\right\rangle
$$

Implementation

We are doing batch processing of many samples!

Variable

y [layer]
Delta
Weights [layer] Biases [layer]

Dimensions

batchsize \times neurons[layer]

 batchsize \times neurons[layer] neurons[lower layer] x neurons[layer] neurons[layer]$$
\frac{\partial C(w)}{\partial w_{j k}^{n, n-1}}=\left\langle\Delta_{j} y_{k}^{(n-1)}\right\rangle \quad \frac{\partial C(w)}{\partial b_{j}^{n}}=\left\langle\Delta_{j}\right\rangle
$$

averaging: sum over batch index!
dWeights[layer]=dot(transpose(y[lower layer]), Delta)/batchsize neurons[lower layer] x batchsize
dBiases[layer]=Delta.sum(0)/batchsize
(summation over index $0=$ batch index)

Implementation

We are doing batch processing of many samples!

Variable

y [layer]
Delta
Weights[layer]
Biases[layer]

Dimensions

batchsize \times neurons[layer]

 batchsize \times neurons[layer] neurons[lower layer] x neurons[layer] neurons[layer]$\Delta_{k}^{\text {new }}=\sum_{j} \Delta_{j} M_{j k}^{n, n-1}$
with: $M_{j k}^{(n, n-1)}=w_{j k}^{(n, n-1)} f^{\prime}\left(z_{k}^{(n-1)}\right)$
Take step from 'layer' down to 'lower layer': Delta=dot(Delta,transpose(Weights))*df_layer[lower layer] batchsize x neurons[lower layer] $f^{\prime}(z)$ in lower layer (first dimension will be expanded)

Implementation

here: NumLayers=3 (count all, except input)

Biases[2] Y_layer[3] df_layer[2]

Weights [2] (stores f'(z))

Biases[1] Y_layer[2] df_layer[1]
Weights [1]
Biases[0] Y_layer[1] df_layer[0]
Weights[0] (here: a 2×3 matrix)
Y_layer[0]

Implementation

Now:The full algorithm, with forward propagation and backpropagation!
(will store neuron values and $f^{\prime}(z)$ values during forward propagation, to be used later during backpropagation)
def net_f_df(z): \# calculate $f(z)$ and $f^{\prime}(z)$
val=1/(1+exp(-z))
return(val,exp(-z)*(val**2)) \# return both f and f'
def forward_step(y,w,b): \# calculate values in next layer $\mathrm{z}=\operatorname{dot}(\mathrm{y}, \mathrm{w})+\mathrm{b}$ \# w=weights, b=bias vector for next layer return(net_f_df(z)) \# apply nonlinearity
def apply_net(y_in): \# one forward pass through the network global Weights, Biases, NumLayers global y_layer, df_layer \# store y-values and df/dz y=y_in \# start with input values
y_layer[0]=y
for j in range(NumLayers): \# loop through all layers \# j=O corresponds to the first layer above input $\mathrm{y}, \mathrm{df}=$ forward_step(y,Weights[j],Biases[j]) df_layer[j]=df \# store f'(z) y_layer[j+1]=y \# store $f(z)$
return(y)
def backward_step(delta,w,df):
\# delta at layer N, of batchsize x layersize(N))
\# w [layersize(N-1) x layersize(N) matrix]
\# $d f=d f / d z$ at layer $N-1$, of batchsize x layersize(N-1) return(dot(delta,transpose(w))*df)
def backprop(y_target): \# one backward pass
\# the result will be the 'dw_layer' matrices with
\# the derivatives of the cost function with respect to
\# the corresponding weight (similar for biases)
global Y_layer, df_layer, Weights, Biases, NumLayers global dw_layer, db_layer \# dCost/dw and dCost/db \# (w, b=weights,biases)
global batchsize
delta=(y_layer[-1]-y_target)*df_layer[-1]
dw_layer[-1]=dot(transpose (y_layer[-2]), delta)/batchsize db_layer[-1]=delta.sum(0)/batchsize
for j in range(NumLayers-1):
delta=backward_step (delta, Weights[-1-j],... ...df_layer[-2-j])
dw_layer[-2-j]=dot(transpose(y_layer[-3-j]), delta)... .../batchsize
db_layer[-2-j]=delta.sum(0)/batchsize

Try out the effects of:

- Value of the stepsize eta
- Layout of the network (number of neurons and number of layers)
- Initialization of the weights

How do these things affect the speed of learning and the final quality (final value of the cost function)?
Try them out also for other test functions (other than in the example)

Change the output layer $f(z)$ to a LINEAR function, i.e. $f(z)=z$! Implement the required changes to the backpropagation code.

Apply this to the example case (learning a 2D function; see code on the website).

Backpropagation: the principle

∂C
$\frac{\partial}{\partial w_{*}}=$?
w_{*}

Backpropagation: the principle

∂C
$\underline{\partial w_{*}}=$?

(omitting indices, should be clear from figure)

Backpropagation: the principle

(omitting indices, should be clear from figure)

Backpropagation: the principle

(omitting indices, should be clear from figure)

Backpropagation: the principle

(omitting indices, should be clear from figure)

Backpropagation: the principle

(omitting indices, should be clear from figure)

Backpropagation: the principle

∂C
$\frac{\partial}{\partial w_{*}}=$?

$$
\begin{aligned}
& y^{\text {out }}-F\left(y^{\text {in }}\right) \\
& f^{\prime}(z) \quad \text { and now: }
\end{aligned}
$$ sum over ALL possible paths!

efficient implementation: repeated matrix/vector multiplication
(omitting indices, should be clear from figure)

Backpropagation

Summary

Initialize vector from output layer:

$$
\Delta_{j}=\left(y_{j}^{n}-F_{j}\left(y^{\mathrm{in}}\right)\right) f^{\prime}\left(z_{j}^{n}\right)
$$

2 For each layer: store outcomes (cost derivatives) for all weights and biases W_{*} in that layer

$$
\frac{\partial C\left(w, y^{\mathrm{in}}\right)}{\partial w_{*}}=\Delta_{j} \frac{\partial z_{j}^{(\operatorname{lseg}}}{\partial w_{*}}
$$

(j is the index where this particular weight appears)
3 Multiply vector by matrix

$$
\Delta_{k}^{\text {new }}=\sum_{j} \Delta_{j} M_{(\text {see above for M) }}^{n, n-1}
$$

(\& return to step 2)
similar to Feynman sum over paths (path integral)
Sum over paths

...or matrix product:
$\Psi(t)=\hat{U}(t) \Psi(0)=\hat{U}_{1} \hat{U}_{2} \hat{U}_{3} \ldots \Psi(0)$

Backpropagation: the code

```
def net_f_df(z): # calculate f(z) and f'(z)
    val=1/(1+exp(-z))
    return(val,exp(-z)*(val**2)) # return both f and f'
```

def forward_step(y,w,b): \# calculate values in next layer

 \(\mathrm{z}=\operatorname{dot}(\mathrm{y}, \mathrm{w})+\mathrm{b}\) \# w=weights, \(\mathrm{b}=\mathrm{bias}\) vector for next layer

 return(net_f_df(z)) \# apply nonlinearity
 def apply_net(y_in): \# one forward pass through the network
global Weights, Biases, NumLayers
global y_layer, df_layer \# store y-values and $d f / d z$
$\mathrm{y}=\mathrm{y}$ _in \# start with input values
Y_layer [0]=y
for j in range(NumLayers): \# loop through all layers
\# j=0 corresponds to the first layer above input

only 30 lines of code!

 \(\mathrm{y}, \mathrm{df}=\mathrm{forward} \mathrm{_step}(\mathrm{y}\),Weights[j],Biases[j])
 df_layer[j]=df \# store f'(z)
 y_layer[j+1]=y \# store \(f(z) \quad\) def backward_step(delta,w,df):
 return(y)
 \# delta \(\bar{a} t\) layer \(N\), of batchsize \(x\) layersize(N))
 \# w [layersize(N-1) x layersize(N) matrix]
 \# df = df/dz at layer \(N-1\), of batchsize \(x\) layersize(N-1)
 return(dot(delta,transpose(w))*df)
 def backprop(y_target): \# one backward pass
global y_layer, df_layer, Weights, Biases, NumLayers
global dw_layer, db̄_layer \# dCost/dw and dCost/db
\#(w,b=weights,biases)
global batchsize
delta=(y_layer[-1]-y_target)*df_layer[-1]
dw_layer $[-1]=\operatorname{dot}\left(\operatorname{transpose}\left(y _l a \bar{y} \operatorname{er}[-2]\right)\right.$, delta)/batchsize
db_layer [-1] =delta. sum (0)/batchsize
for j in range(NumLayers-1):
delta=backward_step(delta, Weights[-1-j],df_layer[-2-j])
dw_layer[-2-j]=dot(transpose(y_layer[-3-j]), delta)/batchsize
db_layer[-2-j]=delta.sum(0)/batchsize

Neural networks: the ingredients

General purpose algorithm: feedforward \& backpropagation (implement once, use often)

Problem-specific:

Choose network layout (number of layers, number of neurons in each layer, type of nonlinear functions, maybe specialized structures of the weights) "Hyperparameters"

Generate training (\& validation \& test) samples: load from big databases (that have to be compiled from the internet or by hand!) or produce by software

Monitor/optimize training progress (possibly choose learning rate and batch size or other parameters, maybe try out many combinations) "Hyperparameters"

Example: Learning a 2D function

see notebook (on website): MultiLayerBackProp $y^{\text {out }}$ (values as color)

0

Example: Learning a 2D function

see notebook (on website): MultiLayerBackProp

\# pick batchsize random positions in the 2D square def make_batch():
global batchsize
inputs=random.uniform(low=-0.5,high=+0.5,size=[batchsize,2]) targets=zeros([batchsize,1]) \# must have right dimensions targets [:, 0]=myFunc(inputs[:,0],inputs[:,1]) return(inputs,targets)
eta=. 1
batchsize=1000
batches=2000
costs=zeros (batches)
for k in range(batches):
y_in,y_target=make_batch ()
costs[k]=train_net(y_in,y_target,eta)

Example: Learning a 2D image

see notebook (on website): Multilayer_ImageCompression
y_{1}

04

Network layers: 2, I 50, I50, I00, I neurons
(after about 2 min of training, ~ 4 Mio. samples)

Reminder: ReLU (rectified linear unit)

$f(z)=\begin{aligned} & z \text { for } z>0 \\ & 0 \text { for } z \leq 0\end{aligned}$
 $$
z=w y+b
$$

Try to understand how the network operates!

results of
switching on
individually
each of 100
neurons

號
\square
\square
\qquad

Image
result
switch
individ
each
euro \qquad

results of
switching on
individually
each of 100
neurons

，

Once

號

results of
switching on
individually
each of 100
neurons

results of
switching on
individually
each of 100
neurons

號

out

號

-

Weights from last hidden layer to output

Weights from 2nd hidden layer to last hidden layer

Weights from I st hidden layer to 2nd hidden layer

deleted last 75

Influence of learning rate (stepsize)

Randomness (initial weights, learning samples)

Influence of batch size / learning rate

Influence of batch size / learning rate

always >0

$$
C\left(w-\eta \nabla_{w} C\right) \approx C(w)-\eta\left(\nabla_{w} C\right)\left(\nabla_{w} C\right)+\ldots
$$

new weights
decrease in C! higher
Potential problems:

- step too large: need higher-order terms
[will not be a problem near minimum of C]
- approx. of C bad [small batch size: approx. C fluctuates]

Sufficiently small learning rate: multiple training steps (batches) add up, and their average is like a larger batch

Programming a general multilayer neural network \& backpropagation was not so hard (once you know it!)
Could now go on to image recognition etc. with the same program!
But: want more flexibility and added features!

For example:

- Arbitrary nonlinear functions for each layer
- Adaptive learning rate
- More advanced layer structures (such as convolutional networks)
- etc.
- Convenient neural network package for python
- Set up and training of a network in a few lines
- Based on underlying neural network / symbolic differentiation package [which also provides runtime compilation to CPU and GPU]: either 'theano' or 'tensorflow' [User does not care]

From the website keras.io

"Keras is a high-level neural networks API, written in Python and capable of running on top of either TensorFlow or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research."
from keras import
from keras.models import Sequential
from keras.layers import Dense

Defining a network

layers with $2,150,150,100$, I neurons

```
net=Sequential()
net.add(Dense(150, input_shape=(2,), activation='relu'))
net.add(Dense(150, activation='relu'))
net.add(Dense(100, activation='relu'))
net.add(Dense(1, activation='relu'))
```


'Compiling' the network

net.compile(loss='mean_squared_error', optimizer=optimizers.SGD(lr=0.1), metrics=['accuracy'])

```
from keras import
from keras.models import Sequential
from keras.layers import Dense
```


Defining a network

"Sequential": the usual neural network, with several layers

net=Sequential()

net.add(Dense(150, input shape=(2,), activation='relu')) net "Dense": "fully connected layer", (all weights there)

input_shape: number of input neurons

'relu': rectified linear unit

'Combiline' the network

SGD=stoch. gradient descent
'loss'=cost net. compile(loss= mean_squared_error' , optimizer=optimizers.SGD (lr=0.1),
|r=learning rate=stepsize :uracy'])

Training the network

```
batchsize=20
batches=200
costs=zeros(batches)
for k in range(batches):
    y_in,y_target=make_batch()
    costs[k]=net.train_on_batch(y_in,y_target)[0]
```

y_in array dimensions 'batchsize' $x 2$
y_target array dimensions 'batchsize' x I (just like before, for our own python code)

Predicting with the network

$$
\text { y_out=net } \cdot \text { predict_on_batch (y_in) }
$$

$y_{\text {_ in }}$ array dimensions 'batchsize' $\times 2$
y_out array dimensions 'batchsize' x I
(just like before, for our own python code)

Homework

Explore how well the network can reproduce various features of target images, and how that depends on the network layout!

Aspects to consider (\& I do not claim to know all the answers!):
How good are other nonlinear functions? [e.g. sigmoids or your own favorite $f(z)$]

Given a fixed total number of weights, is it better to go deep (many layers) or shallow?

Bonus:After training, try to 'prune' the network, i.e. delete neurons whose deletion does not increase the cost function too much!

2, I50, 150,100 , I network after I I Mio. samples, using some smart adaptive learning rate ('adam’)

(about 10 mins on a laptop)
2,500,500,300, I network after 10 Mio. samples, using some smart adaptive learning rate ('adam’)

2,500,500,300, I network after 20 Mio. samples, using some smart adaptive learning rate ('adam’)

original image

Erlangen Gótingen Bryn Mawn USA

Handwriting recognition

$$
\begin{array}{llllllll}
7 & 5 & 9 & 4 & 3 & 1 & 4 & 4 \\
2 & 9 & 7 & 0 & 1 & 7 & 4 & 1 \\
1 & 0 & 3 & 7 & 7 & 4 & 6 & 9 \\
0 & 6 & 4 & 4 & 2 & 2 & 3 & 5 \\
4 & 9 & 9 & 0 & 7 & 3 & 5 & 7 \\
1 & 0 & 6 & 1 & 1 & 5 & 5 & 8 \\
4 & 1 & 6 & 3 & 2 & 1 & 6 & 9 \\
9 & 5 & 5 & 1 & 1 & 2 & 0 & 3
\end{array}
$$

"MNIST" data set (for postal code recognition) http://yann.lecun.com/exdb/mnist/

Handwriting recognition

Will learn:

- distinguish categories
- "softmax" nonlinearity for probability distributions
- "categorical cross-entropy" cost function
- training/validation/test data
- "overfitting" and some solutions

0 | 23456789 0000001000

output: category classification "one-hot encoding"

value

network learns to represent one specific image

category

val1,val2,val3,val4,...
(all pixels)

7	5	9	4	3	1	4	4
2	9	7	0	4	7	4	1
1	0	3	7	7	4	6	9
0	6	4	4	2	2	3	5
4	9	9	0	7	3	5	7
1	0	6	1	1	5	5	8
4	1	6	3	2	1	6	
9	5	5	1	1	2	0	3

network learns to classify a whole class of images

0123456789 (1)000.1. 7000

output: probabilities (select largest)

"Softmax" activation function

Generate normalized probability distribution, from arbitrary vector of input values

(multi-variable generalization of sigmoid)

"Softmax" activation function

$$
f_{j}\left(z_{1}, z_{2}, \ldots\right)=\frac{e^{z_{j}}}{\sum_{k=1}^{N} e^{z_{k}}}
$$

in keras:

net.add(Dense(10,activation='softmax'))

Entropy

For any probability distribution:

$$
S=-\sum_{j} p_{j} \ln p_{j}
$$

(non-negative, additive for factorizable distributions)

Categorical cross-entropy cost function

$$
C=-\sum_{j} y_{j}^{\text {target }} \ln y_{j}^{\text {out }}
$$

where $y_{j}^{\text {target }}=F_{j}\left(y^{\text {in }}\right)$
is the desired "one-hot" classification, in our case

Check: is non-negative and becomes zero for the correct output!
in keras:
net.compile(loss='categorical_crossentropy' , optimizer=optimizers.SGD(lr=1.0), metrics=['categorical_accuracy'])

Categorical cross-entropy cost function

$$
C=-\sum_{j} y_{j}^{\text {target }} \ln y_{j}^{\text {out }}
$$

Advantage: Derivative does not get exponentially small for the saturated case (where one neuron value is close to I and the others are close to 0)

$$
\begin{aligned}
& f_{j}\left(z_{1}, z_{2}, \ldots\right)=\frac{e^{z_{j}}}{\sum_{k=1}^{N} e^{z_{k}}} \\
& \ln f_{j}(z)=z_{j}-\ln \sum^{k} e^{z_{k}} \\
& \frac{\partial \ln f_{j}(z)}{\partial w}=\frac{\partial z_{j}}{\partial w}-\frac{\sum_{k} \frac{\partial z_{k}}{\partial w} e^{z_{k}}}{\sum_{k} e^{z_{k}}}
\end{aligned}
$$

Compare situation for quadratic cost function

$$
f_{j}\left(z_{1}, z_{2}, \ldots\right)=\frac{e^{z_{j}}}{\sum_{k=1}^{N} e^{z_{k}}}
$$

$$
\frac{\partial}{\partial w} \sum_{j}\left(f_{j}(z)-y_{j}^{\mathrm{target}}\right)^{2}=
$$

$$
=2 \sum_{j}\left(f_{j}(z)-y_{j}^{\mathrm{target}}\right) \frac{\partial f_{j}(z)}{\partial w}
$$

Training on the MNIST images

(see code on website)

training_inputs training_results array num_samples x 10
in keras:
history=net.fit(training_inputs, training_results,batch_size=100,epochs=30)

One "epoch" = training once on all 50000 training images, feed them into net in batches of size 100 Here: do 30 of those epochs

Accuracy during training

But:About 7 \% of the test samples are labeled incorrectly!

" 5 " (3 !)

Problem: assessing accuracy on the training set may yield results that are too optimistic!

Need to compare against samples which are not used for training! (to judge whether the net can 'generalize' to unseen samples)

How to honestly assess the quality during training

5000 images

Validation set

(never used for training, but used during training for assessing accuracy!)

Training set

(used for training)
10000 images

Test set

(never used during training, only later to test fully trained net)

Accuracy during training

- Network "memorizes" the training samples (excellent accuracy on training samples is misleading)
- cannot generalize to unfamiliar data

what to do:

- always measure accuracy against validation data, independent of training data
- strategy: stop after reaching maximum in validation accuracy ("early stopping")
- strategy: generate fresh training data by distorting existing images (or produce all training samples algorithmically, never repeat a sample!)
- strategy:"dropout" - set to zero random neuron values during training, such that the network has to cope with that noise and never learns too much detail

Accuracy during training

Generating new training images by transformations

Comparison of machine learning methods on MNIST

>60 entries on http://yann.lecun.com/exdb/mnist/

Linear classifier (I layer NN)
12\%
2 layer (300 hidden)
2 layer (800 hidden)
2 layer (300 hidden), with image
4.7\%
1.6\%
1.6\% preprocessing (deskewing)
2 layer (800 hidden), distorted
0.7\% images
6 layers, distorted images
0.35\%

784/2500/2000/1500/1000/500/10
conv. net "LeNet-I"
I.1\%
committee of 35 conv. nets, with
0.23\% distorted images

Homework

Explore how well the network can do if you add noise to the images (or you occlude parts of them!)

Note: Either use the existing net, or train it explicitly on such noisy/occluded images!
Apply image recognition to some algorithmically generated images

"square"

Convolutional Networks Exploit translational invariance!

different image, same meaning!

Convolutions

$$
F^{\text {new }}(x)=\int \begin{aligned}
& K\left(x-x^{\prime}\right) F\left(x^{\prime}\right) d x^{\prime} \\
& \text { "kernel" }
\end{aligned}
$$

In physics:

- Green's functions for linear partial differential equations (diffusion, wave equations) - Signal filtering

n smoothing

(approx.) derivative

Image filtering: how to blur...
original pixel

resulting pattern

Image filtering: how to obtain contours...

Alternative view: Scan kernel over original (source) image

"Fully connected (dense) layer"

"Convolutional layer"

filter (kernel) size
Same weights (="kernel"="'filter") used for each neuron in the top layer!

"Convolutional layer"

filter (kernel) size
Same weights (='"kernel"='"filter'") used for each neuron in the top layer!

Scan kernel over original (source) image
Different from image processing: learn the kernel weights!

Convolutional neural networks

Exploit translational invariance (features learned in one part of an image will be automatically recognized in different parts)

Drastic reduction of the number of weights stored!
fully connected: N^{2} ($\mathrm{N}=$ size of layer/image) convolutional: M ($\mathrm{M}=$ size of kernel)
independent of the size of the image!
lower memory consumption, improved speed

Several filters (kernels)

e.g. one for smoothing, one for contours, etc.

in keras:

2D convolutional layer

input: NxN image, only I channel [need to specify this only for first layer after input]

net.add (Conv2D (input_shape=(N,N,1),
filters=20, kernel_size=[11,11] activation='relu',padding='same'))

Reducing the resolution

"max pooling"
"average pooling"

in keras:

net.add (AveragePooling2D(pool_size=8))

Enlarging the image size (again)

in keras:
net.add(UpSampling2D(size=8))
(simply repeats values)

A fully developed convolutional net

"Channels"

MxM image

3 channels conv 6 channels

in any output channel, each pixel receives input from KxK nearby pixels in ANY of the input channels (each of those input channel pixel regions is weighted by a different filter); contributions from all the input channels are linearly superimposed
in this example: will need $6 \times 3=18$ filters, each of size KxK (thus: store $18 x K x K$ weights!)
Note: keras automatically takes care of all of this, need only specify number of channels

Handwritten digits recognition with a convolutional net

\# initialize the convolutional network def init_net_conv_simple(): global net, M net = Sequential() net.add(Conv2D(input_shape=(M, M, 1), filters=7, kernel_size=[5,5], activation='relu',padding='same')) net.add(AveragePooling2D(pool_size=4)) net.add (Flatten()) \leftarrow needed for transition to dense layer! net.add(Dense(10, activation='softmax')) net. compile(loss='categorical_crossentropy', optimizer=optimizers.SGD(lr=1.0), metrics=['categorical_accuracy'])
note: $M=28$ (for 28×28 pixel images)

The convolutional filters

Interpretation: try to extract common features of input images!
"diagonal line","curve bending towards upper right corner", etc.

An aside: Gabor filters

2D Gauss times sin-function
encodes orientation and spatial frequency
useful for feature extraction in images (e.g. detect lines or contours of certain orientation)
believed to be good approximation to first stage of image processing in visual cortex

Handwritten digits recognition with a convolutional net

Let's get more ambitious! Train a two-stage convolutional net!

Does not learn at all! Gets 90\% wrong!

same net, with adaptive learning rate (see later; here:'adam' method)

Homework

try and extract the filters after longer training (possibly with enforcing sparsity)

Unsupervised learning

Extracting the crucial features of a large class of training samples without any guidance!

Autoencoder

- Goal: reproduce the input (image) at the output - An example of unsupervised learning (no need for 'correct results' / labeling of data!)
- Challenge: feed information through some small intermediate layer ('bottleneck’)
- This can only work well if the network learns to extract the crucial features of the class of input images
- a form of data compression (adapted to the typical inputs)

Still: need a lot of training examples
Here: generate those examples algorithmically

for example: randomly placed circle

Our convolutional autoencoder network

(20 channels in all intermediate steps)
cost function for a single test image

Can make it even more challenging: produce a cleaned-up version of a noisy input image!

Stacking autoencoders

"greedy layer-wise training"

afterwards can 'fine-tune’ weights by training all of them together, in the large multi-layer network
output=input

Using the encoder part of an autoencoder to build a classifier (trained via supervised learning)

category dense
softmax
input
training the autoencoder = "pretraining"

output=input

Sparse autoencoder:
force most neurons in the inner layer to be zero (or close to some average value) most of the time, by adding a modification to the cost function

This forces useful higher-level representations even when there are many neurons in the inner layer
(otherwise the network could just I:I feed through the input)
input

What are autoencoders good for?

- Autoencoders are useful for pretraining, but nowadays one can train deep networks (with many layers) from scratch
- Autoencoders are an interesting example of unsupervised (or rather self-supervised) learning, but detailed reconstruction of the input (which they attempt) may not be the best method to learn important abstract features
- Still, one may use the compressed representation for visualizing higher-level features of the data
- Autoencoders in principle allow data compression, but are nowadays not competitive with generic algorithms like e.g.jpeg

An aside: Principal Component Analysis (PCA)

Imagine a purely linear autoencoder: which weights will it select?

Challenge: number of neurons in hidden layer is smaller than the number of input/output neurons

Each inner-layer neuron can be understood as the projection of the input onto some vector (determined by the weights belonging to that neuron)
set $\quad w_{j k}=\left\langle v_{j} \mid k\right\rangle$
jo hidden layer for the input-hidden weights
the hidden layer neuron values will be the amplitudes of the input vector in the " v " basis!

$$
\text { set } \quad w_{j k}=\left\langle k \mid v_{j}\right\rangle
$$

for the hidden-output weights ${ }_{M} \bigcirc \mathrm{~K}_{\mathrm{k}}$ hidden
Set restricted projector $\quad \hat{P}=\sum_{j=1}\left|v_{j}\right\rangle\left\langle v_{j}\right|$
where M is the number of neurons in the hidden layer, which is smaller than the size of the Hilbert space, and the vectors form an orthonormal basis (that we still want to choose in a smart way)

The network calculates:
$\hat{P}|\psi\rangle$
Mathematically: try to reproduce a vector (input) as well as possible with a restricted basis set!

Note: in the following, for simplicity, we assume the input vector to be normalized, although the final result we arrive at (principal component analysis) also works for an arbitrary set of vectors

We want: $\quad|\psi\rangle \approx \hat{P}|\psi\rangle$
"...for all the typical input vectors"
$\begin{aligned} & \text { Note: We assume the average has } \\ & \text { already been subtracted, such that }\end{aligned}||\psi\rangle\rangle=0$
Choose the vectors " v " to minimize the average quadratic deviation

$$
\begin{gathered}
\left.\langle\| \mid \psi\rangle-\hat{P}|\psi\rangle \|^{2}\right\rangle \\
=\langle\langle\psi \mid \psi\rangle-\langle\psi \mid \hat{P} \psi\rangle\rangle^{\text {average over all }}
\end{gathered}
$$

Solution: Consider the matrix

$$
\begin{aligned}
& \hat{\rho}=\langle\mid \psi\rangle\langle\psi \mid\rangle=\sum_{j} p_{j}\left|\psi^{(j)}\right\rangle\left\langle\psi^{(j)}\right| \\
& \rho_{m n}=\left\langle\psi_{m} \psi_{n}^{*}\right\rangle \quad \begin{array}{l}
\text { p: probability of having a } \\
\text { particular input vector }
\end{array}
\end{aligned}
$$

This characterizes fully the ensemble of input vectors (for the purposes of linear operations) [this is the covariance matrix of the vectors]
[compare density matrix in quantum physics!]

Claim:
Diagonalize this (hermitean) matrix, and keep the M eigenvectors with the largest eigenvalues. These form the desired set of " v "!

An example in a 2D Hilbert space:
the two eigenvectors of $\hat{\rho}$

(points=end-points of vectors in the
ensemble)

Application to the MNIST database

 shape(training_inputs) the MNISTimages(50000, 784)
subtract average
psi=training_inputs-sum(training_inputs,axis=0)/num_samples
rho=dot(transpose(psi),psi) rho will be 784×784 matrix
vals, vecs=linalg.eig(rho)
get eigenvalues- and vectors (already sorted, largest first)
plt.imshow(reshape(-vecs [: 0], [28, 28]), origin='lower' , cmap='binary', interpolation='nearest')
display the 28×28 image belonging to the largest eigenvector

The first 6 PCA components (eigenvectors)

Can compress the information by projecting only on the first M largest components and then feeding that into a network

All the eigenvalues

The first 100 sum up to more than 90% of the total sum

Visualizing high-dimensional data

Neuron values in some intermediate layer represent input data in some interesting way, but they are hard to visualize! [there are more than 2 neurons in such a layer, typically]

Need some method to project down to 2 dimensions, keeping the distance relation qualitatively similar:"Which inputs are close to each other, which are very different?"

Can also apply this to the input data itself directly, or to some compressed version of it (like PCA components)!

MNIST sample images, reduced to 2D, using PCA

Obtain PCA, then plot components of each image with respect to two eigenvectors with largest eigenvalues (as a point in 2D plane)

Different colors = differently labeled images (diff. digits)

MNIST sample images, reduced to 2D, using "t-SNE"

[using python program by Laurens van der Maaten] Different colors = differently labeled images (diff. digits)

Well-defined clusters!

(starts from 50 PCA components for each image; t-SNE takes about IOmin)

Basic idea of dimensionality reduction: reproduce distances in higher-dimensional space inside the lowerdimensional "map", as closely as possible

Usually not perfectly possible: Remember the map-maker's dilemma!

(Wikipedia)

Can define cost-function, that depends on how close the distances of low-dimensional data points " y " are to those of high-dimensional points " x "

$$
C=\sum_{i \neq j} F\left(\left|x_{i}-x_{j}\right|,\left|y_{i}-y_{j}\right|\right)
$$

Then: minimize cost function, using e.g. gradient descent!
Points in low-dim. space repel if they are closer than their counterparts in high-dim. space, and attract otherwise
[Can introduce arbitrary (monotonous) functions of distances]
attractive forces, if high-dim. distance is smaller than represented here in low dim.

$$
\dot{y}_{j}=-\frac{\partial C}{\partial y_{j}}
$$

2-dim.
"Stochastic neighbor embedding" (SNE): Define "probability distributions" that depend not only on the distance but also include some normalization
$p_{i j} \quad$ Probability to pick a pair of points (i,j). Defined to be larger if they are close neighbors [in the high-dim. space]
$q_{i j} \quad$ similar for low-dim. space

$$
\sum_{i \neq j} q_{i j}=1 \quad \sum_{i \neq j} p_{i j}=1
$$

Want q-distribution to be a close approximation of the p -distribution:

$$
C=K L(P \| Q)=\sum_{i} \sum_{j} p_{i j} \log \frac{p_{i j}}{q_{i j}}
$$

"Kullback-Leibler divergence", a way of comparing probability distributions

Choices made for t-SNE
[for heuristics behind this see Hinton \& v.d.Maaten 2008]
high-dim. space:
(Gaussians dist.)

$$
p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}
$$

$$
p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 n}
$$

low-dim. space: "(Cauchy dist.=

$$
\frac{\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}}{k \neq l}\left(1+\left\|y_{k}-y_{l}\right\|^{2}\right)^{-1}
$$

q is comparatively larger at long distances: allows points in low-dim. space to spread out for intermediate distances (they do not have as much space as high-dim. points! need to give them more room!)

The t-SNE "force":

$$
\begin{aligned}
& \frac{\delta C}{\delta y_{i}}=4 \sum_{j}\left(p_{i j}-q_{i j}\right)\left(y_{i}-y_{j}\right)\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1} \\
& \text { spring-like gravity"-like at } \\
& \text { sign depends on } \\
& \text { match between } \\
& \text { low- and high- } \\
& \text { dim. distributions }
\end{aligned}
$$

An example application from biophysics
"T-SNE visualization of large-scale neural recordings"
George Dimitriadis, Joana Neto,Adam Kampff

Multiple electrodes record voltage timetraces due to nearby spiking neurons: but which spike belongs to which neuron?

Visualizing the evolution during t-SNE optimization.
http://biorxiv.org/content/early/2016/II/I4/087395.figures-only
take neurons out of a multilayer
convolutional network that classifies images, and represent using t-SNE
(example by Andrej Karpathy)
[t-SNE applied to a 4096-dim. representation]

take neurons out of a multilayer convolutional network that classifies images, and represent using t-SNE
(example by Andrej Karpathy)
[t-SNE applied to a 4096-dim. representation]

take neurons out of a multilayer convolutional network that classifies images, and represent using t-SNE
(example by Andrej Karpathy)
[t-SNE applied to a 4096-dim. representation]

Open access to 1,276,278 e-prints in Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance and Statistics Subject search and browse: Physics \hat{v} Search Form Interface Catchup

20 Apr 2017: Applied Physics subject area added to arXiv
10 Mar 2017: New members join arXiv Member Advisory Board
06 Mar 2017: arXiv Scientific Director Search
10 Feb 2017: Attention Submitters: our TeX processing system has been updated
See cumulative "What's New" pages. Read robots beware before attempting any automated d-

Physics

- Astrophysics (astro-ph new, recent, find) includes: Astrophysics of Galaxies; Cosmology and Nongà Astrophysical Phenomena; Instrumentation and Methods fo roles; Solar and Stellar Astrophysics
- Condensed Matter (cond-mat new, recent, find) includes: Disordered Systems and Neural Networks; Materials Science; Mesoscale and Nanoscale Physics; Other Condensed Matter; Quantum Gases; Soft Condensed Matter; Statistical Mechanics; Strongly Correlated Electrons; Superconductivity
- General Relativity and Quantum Cosmology (gr-qc new, recent, find)
- High Energy Physics - Experiment (hep-ex new, recent, find)
- High Energy Physics - Lattice (hep-lat new, recent, find)
- High Energy Physics - Phenomenology (hep-ph new, recent, find)
- High Energy Physics - Theory (hep-th new, recent, find)
- Mathematical Physics (math-ph new, recent, find)
- Nonlinear Sciences (nlin new, recent, find)
includes: Adaptation and Self-Organizing Systems; Cellular Automata and Lattice Gases; Chaotic Dynamics; Exactly Solvable and Integrable Systems; Pattern Formation and Solitons
- Nuclear Experiment (nucl-ex new, recent, find)
- Nuclear Theory (nucl-th new, recent, find)
- Physics (physics new, recent, find) includes: Accelerator Physics; Applied Physics; Atmospheric and Oceanic Physics; Atomic Physics; Atomic and Molecular Clusters; Biological Physics; Chemical Physics; Classical Physics; Computational Physics; Data Analysis, Statistics and Probability; Fluid Dynamics; General Physics; Geophysics; History and Philosophy of Physics; Instrumentation and Detectors; Medical Physics; Optics; Physics Education; Physics and Society; Plasma Physics; Popular Physics; Space Physics
- Quantum Physics (quant-ph new, recent, find)
high energy phenomenology (hep-ph)
high energy theory
(hep-th)
mathematics (math)

quantitative finance

 (q-in) quantitative biology(q -bio) statistics
(stat)

The whole arXiv preprint server, represented as a 2D map

Paperscape uses a simple physical model (similar to t-SNE, but more physical).

Between each two papers there are two forces:

- repulsion (anti-gravity inverse-distance force)
- attraction of any paper to all its references by a linear spring
- also avoid overlap (circle sizes represent number of citations to that paper)

Every morning, after new papers are announced, the map of all 1.3 million papers on the arXiv is re-calculated (takes 3-4 hours)

Artistic representation by Roberto Salàzar and

 Sebastian Pizarro:"Quantum Earth"

Optimized gradient descent algorithms

How to speed up stochastic gradient descent?

- accelerate ("momentum") towards minimum
- Automatically choose learning rate
- ...even different rates for different weights

Summary: a few gradient update methods

 see overview by S. Ruder https://arxiv.org/abs/|609.04747adagrad
RMSprop adadelta
adam
divide by RMS of last few previous gradients
same, but multiply also by RMS of last few parameter updates
divide by RMS of all previous gradients
divide running average of last few gradients by RMS of last few gradients (* with corrections during earliest steps)

Please download "Part Two" to continue

http://machine-learning-for-physicists.org

[^0]: $y^{\text {in }}$

