
Machine
Learning for
Physicists
Summer 2017
University of Erlangen-Nuremberg
Florian Marquardt
Florian.Marquardt@fau.de
http://machine-learning-for-physicists.org

(Image generated by a net with 20 hidden layers)Part One

mailto:Florian.Marquardt@fau.de
mailto:Florian.Marquardt@fau.de
http://machine-learning-for-physicists.org
http://machine-learning-for-physicists.org

INPUT

OUTPUT

(Picture: Wikimedia Commons)

INPUT

OUTPUT

(drawing by
Ramon y Cajal,

~1900)

(Picture: Wikimedia Commons)

INPUT

OUTPUT

Artificial
Neural Network

input layer

output layer

INPUT

OUTPUT

input layer

output layer

“light bulb”

(this particular picture
has never been seen
before!)

(Picture: Wikimedia Commons)

input layer

output layer

“light bulb”

(training images)

(Picture: Wikimedia Commons)

1.2 million training pictures
(annotated by humans)
1000 object classes

ImageNet competition

2012: A deep neural
network beats
competition clearly (16%
error rate; since then
rapid decrease of error
rate, down to about 7%)
Picture: “ImageNet Large Scale Visual Recognition
Challenge”, Russakovsky et al. 2014

Example applications of
(deep) neural networks

Recognize images
Describe images in sentences
Colorize images
Translate languages (French to Spanish, etc.)
Answer questions about a brief text
Play video games & board games at superhuman level

(in physics:)
predict properties of materials
classify phases of matter
represent quantum wave functions

(see links on website)
e.g. http://machinelearningmastery.com/inspirational-applications-deep-learning/

http://machinelearningmastery.com/inspirational-applications-deep-learning/
http://machinelearningmastery.com/inspirational-applications-deep-learning/

Lectures Outline

• Basic structure of artificial neural networks
• Training a network (backpropagation)
• Exploiting translational invariance in image processing

(convolutional networks)
• Unsupervised learning of essential features

(autoencoders)
• Learning temporal data, e.g. sentences (recurrent

networks)
• Learning a probability distribution (Boltzmann machine)
• Learning from rare rewards (reinforcement learning)
• Further tricks and concepts
• Modern applications to physics and science

• Basic structure of artificial neural networks
• Training a network (backpropagation)
• Exploiting translational invariance in image processing

(convolutional networks)
• Unsupervised learning of essential features

(autoencoders)
• Learning temporal data, e.g. sentences (recurrent

networks)
• Learning a probability distribution (Boltzmann machine)
• Learning from rare rewards (reinforcement learning)
• Further tricks and concepts
• Modern applications to physics and science

Python

Lectures Outline

Learning by doing!

Keras
package for

Python

Homework: (usually) explore via programming

We provide feedback if desired

No regular tutorial sessions

Homework

http://www.thp2.nat.uni-erlangen.de/index.php/
2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt

Original site:

New site:
http://machine-learning-for-physicists.org

http://www.thp2.nat.uni-erlangen.de/index.php/2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt
http://www.thp2.nat.uni-erlangen.de/index.php/2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt
http://www.thp2.nat.uni-erlangen.de/index.php/2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt
http://www.thp2.nat.uni-erlangen.de/index.php/2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt
http://www.thp2.nat.uni-erlangen.de/index.php/2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt
http://www.thp2.nat.uni-erlangen.de/index.php/2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt
http://www.thp2.nat.uni-erlangen.de/index.php/2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt

Homework

First homework:
1.Install python & keras on your computer (see
lecture homepage); questions will be resolved after
second lecture THIS IS IMPORTANT!

2.Brainstorm: “Which problems could you address
using neural networks?”

Next time: “installat
ion party” after the lecture

Bring your laptop, if available (or ask questions)

Very brief history of artificial neural networks

“Perceptrons”

“Backpropagation”

“Recurrent networks”

“Deep networks”
become practical

Deep nets for
image recognition

beat the competition

A deep net
reaches expert level in “Go”

50s/60s

80s (*1970)

80s/90s

early 2000s

2012

2015

“Convolutional networks”

1956 Dartmouth
Workshop on
Artificial Intelligence

Lots of tutorials/info on the web...

recommend:
online book by Nielsen ("Neural Networks and Deep
Learning") at https://neuralnetworksanddeeplearning.com

much more detailed book:
“Deep Learning” by Goodfellow, Bengio, Courville; MIT
press; see also http://www.deeplearningbook.org

Software –
here: python & keras (builds on theano)

https://neuralnetworksanddeeplearning.com/
https://neuralnetworksanddeeplearning.com/
https://neuralnetworksanddeeplearning.com/
https://neuralnetworksanddeeplearning.com/
https://neuralnetworksanddeeplearning.com
https://neuralnetworksanddeeplearning.com
http://www.deeplearningbook.org
http://www.deeplearningbook.org

A neural network

= a nonlinear function (of many variables) that
depends on many parameters

input layer

output layer

hidden
layers

A neural network

y1 y2 y3input values

output of a neuron =
nonlinear function of
weighted sum of inputs

...

f(z)
z =

X

j

wjyj + b

y1 y2 y3

w1 w2 w3
weights

input values

output value

output of a neuron =
nonlinear function of
weighted sum of inputs

weighted sum

(offset, “bias”)

...

...

f(z)
z =

X

j

wjyj + b

y1 y2 y3

w1 w2 w3
weights

input values

output value

output of a neuron =
nonlinear function of
weighted sum of inputs

weighted sum

...

...

f(z)

sigmoid

reLU

z

(rectified linear unit)(offset, “bias”)

input layer

output layer

hidden
layers

Each connection has a weight w
Each neuron has an offset b
Each neuron has a nonlinear
function f (fixed)

The values of input layer neurons are fed
into the network from the outside

A neural network

0.4 0.2 1.3 -10.1 0 00

0.4 0.2 1.3 -10.1 0 00

?

0.4 0.2 1.3 -10.1 0 00

0.5 0.1

?

0.4 0.2 1.3 -10.1 0 00

0.5

z=0.5*0.1+0.1*1.3

0.1

f(z)

0.4 0.2 1.3 -10.1 0 00

0.7

“feedforward”
pass through the
network: calculate
output from input

0.4 0.2 1.3 -10.1 0 00

0.7-0.2 0.5 ...

“feedforward”
pass through the
network: calculate
output from input

0.2

0.4 0.2 1.3 -10.1 0 00

0.7-0.2 0.5 ...

0.2 -2.3 ...

“feedforward”
pass through the
network: calculate
output from input

0.5

0.2

0.4 0.2 1.3 -10.1 0 00

0.7-0.2 0.5 ...

0.2 -2.3

1.7 -0.3

...

“feedforward”
pass through the
network: calculate
output from input

0.5

0.2

zj =
X

k

wjky
in
k + bj

youtj = f(zj)

j=output neuron
k=input neuron

input

output

z = wyin + b

in matrix/vector notation:

elementwise nonlinear function:

One layer

Python

u=dot(M,v)

for j in range(N):
 do_step(j)

x=linspace(-5,5,N)

def f(x):
 return(sin(x)/x)

Anaconda Jupyter

zj =
X

k

wjky
in
k + bj

z = wyin + b

in matrix/vector notation:

z=dot(w,y)+b

A few lines of “python” !

Python code

matrix (Nout x Nin) vector (Nout)

vector (Nin)

vector (Nout)

Random weights and biases

Input values

Apply network!

N0=3

N1=2

A few lines of “python” !

input

output

y1

y2

z = w1y1 + w2y2 + b

y1 y2

f(z)

<0

>0

A basic network (without hidden layer)

y2

y1 y2

f(z)

y1

f(z)

A basic network (without hidden layer)

Processing batches: Many samples in parallel

sample 1

sample 2

sample 3

...

y1 y2 y3

Avoid loops! (slow)

Processing batches: Many samples in parallel

many samples:
ymatrix (Nsamples x Nin)

vector (Nin) y
one sample:

Apply matrix/vector operations to operate on all
samples simultaneously! Avoid loops! (slow)

Note: Python interprets M=A+b
vector (N2)

matrix (N1 x N2)

as: Mij = Aij + bj
First index of b is ‘expanded’ to size indicated by A

z=dot(w,y)+b

matrix (Nout x Nin) vector (Nout)

vector (Nin)

vector (Nout)

one sample:

many samples:

z=dot(y,w)+b

matrix (Nin x Nout)
vector (Nout)

matrix (Nsamples x Nin)
matrix
(Nsamples x Nout)

becomes
Nsamples x Nout

Processing batches: Many samples in parallel

y1

y2

y
out

(y
1

, y
2

)

We can create complicated functions...

...but can we create arbitrary functions?

Approximating an arbitrary nonlinear function

y

F (y)

Approximating an arbitrary nonlinear function

�F1

�F2

Y1 Y2 y

y
out

= �F
1

f(w · (y � Y
1

)) + �F
2

f(w · (y � Y
2

))

(f = sigmoid = smooth step)

y
out

= �F
1

f(w · (y � Y
1

)) + �F
2

f(w · (y � Y
2

))

�F1

�F2

Y1 Y2 y

y1 y2

y

y1 y2

�F1 �F2

w w

y
out

(f = sigmoid = smooth step)

use biases:
b2 = �wY2

b1 = �wY1

y1 y2

y

�F1 �F2�F3

y3 y4

�F4

Approximating an arbitrary 2D nonlin. function

y1

y2

y1

y2

0

1

Approximating an arbitrary 2D nonlin. function

First step: create quarter-
space “step function”

y1 y2

y
out

0 yj 1

f(w · (y1 + y2 � 1.5))=

wfor large :

y1
y2

0 1

0

1

0 0

0 1

Trick: “AND” operation in a neural network

y1 y2

y
out

0 yj 1

wfor large :

y1
y2

0 1

0

1

0 0

0 1

AND

Trick: “AND” operation in a neural network

Homework

Figure out how to implement the following operations using a
neural network:

OR
XOR (gives 1 only if inputs are different, i.e. for 10 and 01)

Approximating an arbitrary 2D nonlin. function

y
out

y1 y2

f(w · (y1 � ȳ1)) f(w · (y2 � ȳ2))

y1

y2

ȳ1

ȳ2

0 0

0 1

AND

step in step in y1 y2

y1

y2

(superimposing two such quarter-space functions)

Approximating an arbitrary 2D nonlin. function

y1

y2

y1 y2

AND AND AND

�F1
�F2 �F3

Universality of neural networks

Any arbitrary (smooth) function (with vector input
and vector output) can be approximated as well as
desired by a neural network with a single (!) hidden
layer.

“Approximation by superpositions of a sigmoidal function”, by George Cybenko (1989)

(as long as we allow for sufficiently many neurons)

http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf

Homework
Figure out how to implement a 2D function that produces a
(smoothened) square

y1

y2
Bonus version: how to get
an arbitrary convex shape
(approximately)?

y1

y2

Implement them on the computer and play around...

Homework
Extra * bonus version:

We have indicated how to approximate arbitrary
functions in 2D using 2 hidden layers (with our AND
construction, and summing up in the end)

Can you do it with a single hidden layer?

input layer

output layer

A neural network

=

Complicated nonlinear
function that depends on
all the weights and biases

INPUT INPUT

OUTPUT OUTPUT

yout = Fw(y
in)

Note: When we write “w” as subscript of F, we mean all the weights and also biases
Note: When we write “yout”, we mean the whole vector of output values

How to choose the weights (and biases) ?

By “training” with thousands of examples!

This is essentially nonlinear curve fitting!

yout = Fw(y
in)

yout

yin

training examples
= known data points

Example for one output neuron and one input neuron

curve depends on parameters w
adjust w!

Challenge:

maybe 1000s of input neurons (dimension of yin)
many 1000s of hidden layer neurons
millions of weights

need at least tens of thousands (or more) examples

Curve fitting with a million parameters!

0.4 0.2 1.3 -10.1 0 00

0.7-0.2 0.5 ...

0.2 -2.3

1.7 -0.3

...0.5

0.2

0.4 0.2 1.3 -10.1 0 00

0.7-0.2 0.5 ...

0.2 -2.3

1.7 -0.3

...0.5

0.2

change this weight!

0.4 0.2 1.3 -10.1 0 00

0.8-0.2 0.5 ...

0.2 -2.3

1.7 -0.3

...0.5

0.2

0.4 0.2 1.3 -10.1 0 00

0.8-0.2 0.5 ...

0.2 -2.1

1.7 -0.3

...0.4

0.2

0.4 0.2 1.3 -10.1 0 00

0.8-0.2 0.5 ...

0.2 -2.1

1.9 -0.2

...0.4

0.2

0.4 0.2 1.3 -10.1 0 00

0.8-0.2 0.5 ...

0.2 -2.1

1.9 -0.2

...0.4

0.2

Goal: Adapt weights to get closer to the
“correct” answer (provided by the trainer)

Neural Net
Structure

Stochastic
Gradient
Descent

Backpropagation

http://www.thp2.nat.uni-erlangen.de/index.php/
2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt

http://www.thp2.nat.uni-erlangen.de/index.php/2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt
http://www.thp2.nat.uni-erlangen.de/index.php/2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt
http://www.thp2.nat.uni-erlangen.de/index.php/2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt
http://www.thp2.nat.uni-erlangen.de/index.php/2017_Machine_Learning_for_Physicists,_by_Florian_Marquardt

input layer

output layer

A neural network

=

Complicated nonlinear
function that depends on
all the weights and biases

INPUT INPUT

OUTPUT OUTPUT

yout = Fw(y
in)

Note: When we write “w” as subscript of F, we mean all the weights and also biases
Note: When we write “yout”, we mean the whole vector of output values

We would like:

yout = Fw(y
in)

yout ⇡ F (yin)

desired “target” function

We have:

neural network
(w here also stands for the biases)

Cost function measures deviation:

C(w) =
1

2
hk Fw(y

in)� F (yin) k2i

vector norm average over
all samples

yout = Fw(y
in)

yout

yin

training examples
= known data points

s=index of sample

Approximate version, for N samples:

Minimizing C for this case: “least-squares fitting”!

C(w) ⇡ 1

2

1

N

NX

s=1

k Fw(y
(s))� F (y(s)) k2

C(w)

w

Method: “Sliding down the hill”
(“gradient descent”)

ẇ ⇠ �rwC(w)

physicist would say:
motion of an overdamped
particle (velocity set by force)

Problem: Evaluating C would mean averaging
over ALL training samples
Solution: Only average over a few samples, get
approximate C

wj 7! wj � ⌘
@C̃(w)

@wj

Discrete steps: for each step evaluate a few
samples and update weights according to:

stepsize parameter

approximate
version of C

(Note: just as before, the biases b are included
here, think of them as extra parameters w)

Stochastic Gradient Descent

(take different
samples in
each step!)

True gradient of C

Stochastic gradient descent

For sufficiently small steps: sum over
many steps approximates true gradient
(because it is an additional average)

(C large)

(C smaller)

@C(w)

@w⇤
=?

some weight (or bias),
somewhere in the net

w⇤

It’s time to use
the chain rule!

(image: Wikimedia)

Small network: Calculate derivative of
cost function “by hand”

y1 y2

f(z)

@C

@w1
=

⌧
(f(z)� F)f 0(z)

@z

@w1

�

@z

@w1
= y1

INPUT

OUTPUT z = w1y1 + w2y2 + b

C(w) =
1

2

⌦
(f(z)� F (y1, y2))

2
↵

desired outputnetwork
output

cost

Backpropagation

n

n-1

Now for the full network!

Need to keep track of indices carefully:

y(n)j Value of neuron j in layer n

z(n)j
Input value for “y=f(z)”

wn,n�1
jk Weight (neuron k in layer

n-1 feeding into neuron j in
layer n)

Backpropagation

We get:

C(w) =
⌦
C(w, yin)

↵

cost value for one particular input

We have:

=
X

j

(y(n)j � Fj(y
in))f 0(z(n)j)

@z(n)j

@w⇤

@C(w, yin)

@w⇤
=

X

j

(y(n)j � Fj(y
in))

@y(n)j

@w⇤

=?some weight (or bias),
somewhere in the net

y(n)j = f(z(n)j)
(we used:)

Backpropagation

Apply chain rule repeatedly
We want: Change of neuron j in layer n
due to change of some arbitrary
weight :

n

n-1

And now: the same again (recursion)

@z(n)j

@w⇤
=

X

k

@z(n)j

@y(n�1)
k

@y(n�1)
k

@w⇤

=
X

k

wn,n�1
jk f 0(z(n�1)

k)
@z(n�1)

k

@w⇤

w⇤

Backpropagation

Important insight: Each pair of layers [n,n-1]
contributes multiplication with the following matrix:

M (n,n�1)
jk = w(n,n�1)

jk f 0(z(n�1)
k)

=
X

k

wn,n�1
jk f 0(z(n�1)

k)
@z(n�1)

k

@w⇤

@z(n)j

@w⇤

Backpropagation

Repeated matrix multiplication, going down the net:

@z(n)j

@w⇤
=

X

k,l,...,u,v

Mn,n�1
jk Mn�1,n�2

kl . . .M ñ+1,ñ
uv

@z(ñ)v

@w⇤

Backpropagation

What happens when we finally encounter the weight
with respect to which we wanted to calculate the
derivative of the cost function?

@z(ñ)j

@wñ,ñ�1
jk

= y(ñ�1)
k

If was really a weight:

@z(ñ)j

@bñj
= 1

w⇤

...if it was a bias:

ñ

ñ� 1
w⇤

w⇤ j

k

w⇤

How to evaluate this: construct vector for output layer n,
and then multiply with matrices from the right (as shown
above)

Backpropagation

In total, we get:

C(w) =
⌦
C(w, yin)

↵

cost value for one particular input

We have:

=
X

j

(y(n)j � Fj(y
in))f 0(z(n)j)

@z(n)j

@w⇤

@C(w, yin)

@w⇤
=

X

j

(y(n)j � Fj(y
in))

@y(n)j

@w⇤

�k =
X

j

�jM
n,n�1
jk

Backpropagation

Initialize vector from output layer:

�j = (ynj � Fj(y
in))f 0(znj)

For each layer: store outcomes
(cost derivatives) for all weights
and biases in that layer

w⇤

1

2

3

(see above)

Summary

Multiply vector by matrix
new

(see above for M)

@C(w, yin)

@w⇤
= �j

@z(n)j

@w⇤

(& return to step 2)

(j is the index where this
particular weight appears)

w⇤

Backpropagation

w⇤

Very efficient: One single
backpropagation pass through the
network yields ALL the derivatives
of C with respect to all the weights
and biases!

No more effort than forward
propagation!

Huge (“million-fold”) advantage
over naive approach of calculating
numerically derivatives for all
weights individually!

“force” tries to pull
into direction of
correct outcome

adjusts all weights (&
biases) in layers below

Backpropagation

Physical
intuitive
picture:

Backpropagation

@C(w, yin)

@w⇤
= �j

@z(n)j

@w⇤

In each layer:

@z(n)j

@wn,n�1
jk

= y(n�1)
k

@z(n)j

@bnj
= 1

@C(w)

@wn,n�1
jk

=
D
�jy

(n�1)
k

E @C(w)

@bnj
= h�ji

Weight: Bias:

––– Averaging over samples: –––

We are doing batch processing of many samples!

@C(w)

@wn,n�1
jk

=
D
�jy

(n�1)
k

E

dWeights[layer]=dot(transpose(y[lower layer]),Delta)/batchsize

neurons[lower layer] x batchsize

@C(w)

@bnj
= h�ji

dBiases[layer]=Delta.sum(0)/batchsize

averaging: sum over batch index!

(summation over index 0=batch index)

Implementation

batchsize x neurons[layer]y[layer]

Delta batchsize x neurons[layer]
Weights[layer] neurons[lower layer] x neurons[layer]
Biases[layer] neurons[layer]

DimensionsVariable

batchsize x neurons[layer]

We are doing batch processing of many samples!

y[layer]

Delta batchsize x neurons[layer]
Weights[layer] neurons[lower layer] x neurons[layer]
Biases[layer] neurons[layer]

DimensionsVariable

Implementation

�k =
X

j

�jM
n,n�1
jk

new

Delta=dot(Delta,transpose(Weights))*df_layer[lower layer]

Take step from ‘layer’ down to ‘lower layer’:

f ’(z) in lower layerbatchsize x neurons[lower layer]
(first dimension will be expanded)

M (n,n�1)
jk = w(n,n�1)

jk f 0(z(n�1)
k)with:

Weights[0]

Weights[1]

Weights[2]

Biases[0]

Biases[1]

Biases[2]

y_layer[1]

y_layer[0]

y_layer[2]

y_layer[3]

here: NumLayers=3 (count all, except input)

df_layer[0]

df_layer[1]

df_layer[2]

Implementation

(here: a 2x3 matrix)

(stores f ’(z))

Implementation

Now: The full algorithm, with forward propagation and
backpropagation!

(will store neuron values and f ’(z) values during
forward propagation, to be used later during
backpropagation)

def net_f_df(z): # calculate f(z) and f'(z)
 val=1/(1+exp(-z))
 return(val,exp(-z)*(val**2)) # return both f and f'

def forward_step(y,w,b): # calculate values in next layer
z=dot(y,w)+b # w=weights, b=bias vector for next layer

 return(net_f_df(z)) # apply nonlinearity

def apply_net(y_in): # one forward pass through the network
 global Weights, Biases, NumLayers
 global y_layer, df_layer # store y-values and df/dz
 y=y_in # start with input values
 y_layer[0]=y
 for j in range(NumLayers): # loop through all layers
 # j=0 corresponds to the first layer above input
 y,df=forward_step(y,Weights[j],Biases[j])
 df_layer[j]=df # store f'(z)
 y_layer[j+1]=y # store f(z)
 return(y)

def backward_step(delta,w,df):
 # delta at layer N, of batchsize x layersize(N))
 # w [layersize(N-1) x layersize(N) matrix]
 # df = df/dz at layer N-1, of batchsize x layersize(N-1)
 return(dot(delta,transpose(w))*df)

def backprop(y_target): # one backward pass
 # the result will be the 'dw_layer' matrices with
 # the derivatives of the cost function with respect to
 # the corresponding weight (similar for biases)
 global y_layer, df_layer, Weights, Biases, NumLayers
 global dw_layer, db_layer # dCost/dw and dCost/db

 #(w,b=weights,biases)
 global batchsize

 delta=(y_layer[-1]-y_target)*df_layer[-1]
 dw_layer[-1]=dot(transpose(y_layer[-2]),delta)/batchsize
 db_layer[-1]=delta.sum(0)/batchsize
 for j in range(NumLayers-1):
 delta=backward_step(delta,Weights[-1-j],

df_layer[-2-j])
 dw_layer[-2-j]=dot(transpose(y_layer[-3-j]),delta)

/batchsize
 db_layer[-2-j]=delta.sum(0)/batchsize

...
...

...
...

Homework

Try out the effects of:
- Value of the stepsize eta
- Layout of the network (number of neurons and
number of layers)
- Initialization of the weights
How do these things affect the speed of learning
and the final quality (final value of the cost
function)?

Try them out also for other test functions (other
than in the example)

For the example case (learning
a 2D function; see code on
the website)

Homework

Change the output layer f(z) to a LINEAR function,
i.e. f(z)=z! Implement the required changes to the
backpropagation code.

Apply this to the example case (learning a 2D
function; see code on the website).

Neural Net
Structure

Stochastic
Gradient
Descent

Backpropagation

Backpropagation: the principle

C

w⇤

@C

@w⇤
=?

Backpropagation: the principle

C yout � F (yin)

w⇤

@C

@w⇤
=?

(omitting indices, should
be clear from figure)

Backpropagation: the principle

C

f 0(z)
yout � F (yin)

w⇤

@C

@w⇤
=?

(omitting indices, should
be clear from figure)

Backpropagation: the principle

C

f 0(z)
w

f 0(z)

yout � F (yin)

w⇤

@C

@w⇤
=?

(omitting indices, should
be clear from figure)

Backpropagation: the principle

C

f 0(z)
w

f 0(z)

w
f 0(z)

yout � F (yin)

w⇤

@C

@w⇤
=?

(omitting indices, should
be clear from figure)

Backpropagation: the principle

C

f 0(z)
w

f 0(z)

w
f 0(z)

y

yout � F (yin)

w⇤

@C

@w⇤
=?

(omitting indices, should
be clear from figure)

Backpropagation: the principle

C

f 0(z)
w

f 0(z)

w
f 0(z)

y

yout � F (yin)

and now:
sum over ALL
possible paths!

w⇤

@C

@w⇤
=?

(omitting indices, should
be clear from figure)

efficient implementation:
repeated matrix/vector
multiplication

�k =
X

j

�jM
n,n�1
jk

Backpropagation

Initialize vector from output layer:

�j = (ynj � Fj(y
in))f 0(znj)

For each layer: store outcomes
(cost derivatives) for all weights
and biases in that layer

w⇤

1

2

3

(see above)

Summary

Multiply vector by matrix
new

(see above for M)

@C(w, yin)

@w⇤
= �j

@z(n)j

@w⇤

(& return to step 2)

(j is the index where this
particular weight appears)

w⇤

similar to Feynman sum over paths (path integral)
tim

e

C

 (t) = Û(t) (0) = Û1Û2Û3 . . . (0)

x0

x

Sum over paths

...or matrix product:

la
ye

r

Backpropagation: the code
def net_f_df(z): # calculate f(z) and f'(z)
 val=1/(1+exp(-z))
 return(val,exp(-z)*(val**2)) # return both f and f'

def forward_step(y,w,b): # calculate values in next layer
z=dot(y,w)+b # w=weights, b=bias vector for next layer
 return(net_f_df(z)) # apply nonlinearity

def apply_net(y_in): # one forward pass through the network
 global Weights, Biases, NumLayers
 global y_layer, df_layer # store y-values and df/dz
 y=y_in # start with input values
 y_layer[0]=y
 for j in range(NumLayers): # loop through all layers
 # j=0 corresponds to the first layer above input
 y,df=forward_step(y,Weights[j],Biases[j])
 df_layer[j]=df # store f'(z)
 y_layer[j+1]=y # store f(z)
 return(y)

def backward_step(delta,w,df):
 # delta at layer N, of batchsize x layersize(N))
 # w [layersize(N-1) x layersize(N) matrix]
 # df = df/dz at layer N-1, of batchsize x layersize(N-1)
 return(dot(delta,transpose(w))*df)

def backprop(y_target): # one backward pass
 global y_layer, df_layer, Weights, Biases, NumLayers
 global dw_layer, db_layer # dCost/dw and dCost/db
 #(w,b=weights,biases)
 global batchsize

 delta=(y_layer[-1]-y_target)*df_layer[-1]
 dw_layer[-1]=dot(transpose(y_layer[-2]),delta)/batchsize
 db_layer[-1]=delta.sum(0)/batchsize
 for j in range(NumLayers-1):
 delta=backward_step(delta,Weights[-1-j],df_layer[-2-j])
 dw_layer[-2-j]=dot(transpose(y_layer[-3-j]),delta)/batchsize
 db_layer[-2-j]=delta.sum(0)/batchsize

only 30 lines
of code!

Neural networks: the ingredients

General purpose algorithm: feedforward & backpropagation
(implement once, use often)

Problem-specific:
Choose network layout (number of layers, number of neurons
in each layer, type of nonlinear functions, maybe specialized
structures of the weights)

Generate training (& validation & test) samples: load from big
databases (that have to be compiled from the internet or by
hand!) or produce by software

Monitor/optimize training progress (possibly choose learning
rate and batch size or other parameters, maybe try out many
combinations)

“Hyperparameters”

“Hyperparameters”

Example: Learning a 2D function

yout

y0 y1
y0

y1

Evaluate at sample points

yout (values as color)

see notebook (on website): MultiLayerBackProp

Example: Learning a 2D function
see notebook (on website): MultiLayerBackProp

pick batchsize random positions in the 2D square
def make_batch():
 global batchsize

 inputs=random.uniform(low=-0.5,high=+0.5,size=[batchsize,2])
 targets=zeros([batchsize,1]) # must have right dimensions
 targets[:,0]=myFunc(inputs[:,0],inputs[:,1])
 return(inputs,targets)

eta=.1
batchsize=1000
batches=2000
costs=zeros(batches)

for k in range(batches):
 y_in,y_target=make_batch()
 costs[k]=train_net(y_in,y_target,eta)

y0

y1

see notebook (on website): MultiLayer_ImageCompression

Example: Learning a 2D image

(after about 2min of training, ~4 Mio. samples)
Network layers: 2,150,150,100,1 neurons

y0

y1
w

f(z) =
z for z > 0

0 for z 0

z = wy + b

Reminder: ReLU (rectified linear unit)

z =
0

à la Franz Marc?

Try to understand how the network operates!

Switching on only a single neuron of the last hidden layer
Image shows
results of
switching on
individually
each of 100
neurons

output

0 1 2 3 4 ...

0 1 2 3 ...

deleted first 50 weights deleted last 50 weights kept only 10 out of 100

deleted first 75

Weights from last hidden layer to output

Weights from 2nd hidden layer to last hidden layer

deleted last 75 kept only 10 out of 150

Weights from 1st hidden layer to 2nd hidden layer

deleted first 75 deleted last 75 kept only 10 out of 150

Influence of learning rate (stepsize)

eta=0.1(batchsize=1000)

batch

Cost

eta=0.1
eta=0.2

Influence of learning rate (stepsize)

(batchsize=1000)

batch

Cost

eta=0.1
eta=0.2
eta=0.5

Influence of learning rate (stepsize)

(batchsize=1000)

batch

Cost

eta=0.1
eta=0.2
eta=0.5
eta=1.0

Influence of learning rate (stepsize)

(batchsize=1000)

batch

Cost

eta=1.0

Randomness (initial weights, learning samples)

all:

Learning is a
stochastic,
nonlinear process!

(batchsize=1000)

batch

Cost

Influence of batch size / learning rate

Small batch size
and large learning
rate together are
problematic!

(batchsize=20)

batch

eta=0.1
eta=0.2
eta=0.5
eta=1.0

Cost

(C large)

C(w � ⌘rwC) ⇡ C(w)� ⌘(rwC)(rwC) + . . .
always >0

higher
order in

decrease in C!

⌘
new weights

Influence of batch size / learning rate

Potential problems:
- step too large: need higher-order terms
 [will not be a problem near minimum of C]
- approx. of C bad [small batch size: approx. C fluctuates]

Sufficiently small learning
rate: multiple training
steps (batches) add up,
and their average is like a
larger batch

Programming a general
multilayer neural network &
backpropagation was not so hard
(once you know it!)

But: want more flexibility and added
features!

For example:
• Arbitrary nonlinear functions for each layer
• Adaptive learning rate
• More advanced layer structures (such as

convolutional networks)
• etc.

Could now go on to image
recognition etc. with the same
program!

Keras
• Convenient neural network package for python
• Set up and training of a network in a few lines
• Based on underlying neural network / symbolic

differentiation package [which also provides run-
time compilation to CPU and GPU]: either ‘theano’
or ‘tensorflow’ [User does not care]

“Keras is a high-level neural networks API, written in Python
and capable of running on top of either TensorFlow or Theano. It
was developed with a focus on enabling fast experimentation.
Being able to go from idea to result with the least possible delay
is key to doing good research.”

Keras
From the website keras.io

https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://github.com/Theano/Theano
https://github.com/Theano/Theano

net=Sequential()
net.add(Dense(150, input_shape=(2,), activation='relu'))
net.add(Dense(150, activation='relu'))
net.add(Dense(100, activation='relu'))
net.add(Dense(1, activation='relu'))

Defining a network

layers with 2,150,150,100,1 neurons

‘Compiling’ the network

net.compile(loss='mean_squared_error',
 optimizer=optimizers.SGD(lr=0.1),
 metrics=['accuracy'])

from keras import *
from keras.models import Sequential
from keras.layers import Dense

net=Sequential()
net.add(Dense(150, input_shape=(2,), activation='relu'))
net.add(Dense(150, activation='relu'))
net.add(Dense(100, activation='relu'))
net.add(Dense(1, activation='relu'))

Defining a network

layers with 2,150,150,100,1 neurons

‘Compiling’ the network

net.compile(loss='mean_squared_error',
 optimizer=optimizers.SGD(lr=0.1),
 metrics=['accuracy'])

from keras import *
from keras.models import Sequential
from keras.layers import Dense

“Dense”: “fully connected layer” (all weights there)

input_shape: number of input neurons

‘relu’: rectified linear unit

“Sequential”: the usual neural network, with several layers

‘loss’=costSGD=stoch. gradient descent

lr=learning rate=stepsize

Training the network

batchsize=20
batches=200
costs=zeros(batches)

for k in range(batches):
 y_in,y_target=make_batch()
 costs[k]=net.train_on_batch(y_in,y_target)[0]

y_in array dimensions ‘batchsize’ x 2
y_target array dimensions ‘batchsize’ x 1

(just like before, for our own python code)

Predicting with the network

y_in array dimensions ‘batchsize’ x 2
y_out array dimensions ‘batchsize’ x 1

(just like before, for our own python code)

y_out=net.predict_on_batch(y_in)

Homework

Explore how well the network can reproduce
various features of target images, and how that
depends on the network layout!

Aspects to consider (& I do not claim to know all the answers!):

How good are other nonlinear functions? [e.g. sigmoids or your
own favorite f(z)]

Given a fixed total number of weights, is it better to go deep
(many layers) or shallow?

Bonus: After training, try to ‘prune’ the network, i.e. delete
neurons whose deletion does not increase the cost function too
much!

after 11 Mio. samples, using some smart
adaptive learning rate (‘adam’)

2,150,150,100,1 network

after 10 Mio. samples, using some smart
adaptive learning rate (‘adam’)

2,500,500,300,1 network
(about 10 mins on a laptop)

after 20 Mio. samples, using some smart
adaptive learning rate (‘adam’)

2,500,500,300,1 network
(about 20 mins on a laptop)

Emmy Noether (1882-1935)
Erlangen, Göttingen, Bryn Mawr/USA

original image

“Emmy Noether” !

Handwriting recognition

“MNIST” data set (for postal code recognition)
http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Handwriting recognition

Will learn:
- distinguish categories
- “softmax” nonlinearity for probability distributions
- “categorical cross-entropy” cost function
- training/validation/test data
- “overfitting” and some solutions

0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 1 0 0 0

28x28 input pixels
(=784 gray values)

output: category
classification

“one-hot encoding”

x,y

value category

val1,val2,val3,val4,...
(all pixels)

network learns to
represent one
specific image

network learns to
classify a whole
class of images

(coordinates)

0 1 2 3 4 5 6 7 8 9
.1 0 0 0 .1 .1 .7 0 0 0

28x28 input pixels
(=784 gray values)

output: probabilities
(select largest)

.1 0 0 0 .1 .1 .7 0 0 0

fj(z1, z2, . . .) =
ezj

PN
k=1 e

zk

k

j

Generate normalized probability distribution,
from arbitrary vector of input values

“Softmax” activation function

(multi-variable generalization of sigmoid)

fj(z1, z2, . . .) =
ezj

PN
k=1 e

zk

“Softmax” activation function

 net.add(Dense(10,activation='softmax'))
in keras:

Entropy

S = �
X

j

pj ln pj

For any probability distribution:

(non-negative, additive for factorizable distributions)

Categorical cross-entropy cost function

C = �
X

j

ytargetj ln youtj

ytargetj = Fj(y
in)where

is the desired “one-hot” classification,
in our case

Check: is non-negative and becomes zero for the
correct output!

net.compile(loss='categorical_crossentropy',
optimizer=optimizers.SGD(lr=1.0),
metrics=['categorical_accuracy'])

in keras:

Categorical cross-entropy cost function

C = �
X

j

ytargetj ln youtj

Advantage: Derivative does not get exponentially
small for the saturated case (where one neuron
value is close to 1 and the others are close to 0)

ln fj(z) = zj � ln
X

k

ezk

@ ln fj(z)

@w
=

@zj
@w

�
P

k
@zk
@w ezkP
k e

zk

derivative of input values

fj(z1, z2, . . .) =
ezj

PN
k=1 e

zk

Categorical cross-entropy cost function
Compare situation for quadratic cost function

fj(z1, z2, . . .) =
ezj

PN
k=1 e

zk

@

@w

X

j

(fj(z)� ytargetj)2 =

= 2
X

j

(fj(z)� ytargetj)
@fj(z)

@w

f(z) slope becomes
exponentially small!

training may get ‘stuck’ for a
long time!

Training on the MNIST images

training_inputs array num_samples x numpixels
training_results array num_samples x 10

(“one-hot”)

history=net.fit(training_inputs,
training_results,batch_size=100,epochs=30)

One “epoch” = training once on all 50000 training
images, feed them into net in batches of size 100
Here: do 30 of those epochs

(see code on website)

in keras:

Accuracy during training

epochs [1 epoch ~ 50000 images]

seems very good!
only <3% error !(?)

net: 784(input), 30, 10(output)

“8” (3 !) “7” (4 !) “5” (6 !)

“7” (9 !) “3” (7 !) “5” (3 !)

But: About 7 % of the test samples are labeled incorrectly!

Problem: assessing accuracy on the training set may
yield results that are too optimistic!

Need to compare against samples which are not
used for training! (to judge whether the net can
‘generalize’ to unseen samples)

Training set

Validation set

Test set

(never used for training, but
used during training for
assessing accuracy!)

(used for training)

(never used during
training, only later to test
fully trained net)

45000 images

5000 images

10000 images

(numbers for our MNIST example)

How to honestly assess the quality during training

Accuracy during training

epochs [1 epoch ~ 50000 images]

accuracy on training data

accuracy on validation data

goes down again!
“overfitting”

net: 784(input), 30, 10(output)

“Overfitting”

- Network “memorizes” the training samples (excellent
accuracy on training samples is misleading)
- cannot generalize to unfamiliar data

what to do:
- always measure accuracy against validation data,
independent of training data
- strategy: stop after reaching maximum in validation
accuracy (“early stopping”)
- strategy: generate fresh training data by distorting
existing images (or produce all training samples
algorithmically, never repeat a sample!)
- strategy: “dropout” – set to zero random neuron
values during training, such that the network has to
cope with that noise and never learns too much detail

Accuracy during training

epochs [1 epoch ~ 50000 images]

accuracy on training data

accuracy on validation data

net: 784(input), 100, dropout 10%, 50, 10(output)

(3% mistakes on test data)

Generating new training images by transformations

Comparison of machine learning methods on MNIST

Linear classifier (1 layer NN) 12%
>60 entries on http://yann.lecun.com/exdb/mnist/

2 layer (300 hidden) 4.7%

2 layer (300 hidden), with image
preprocessing (deskewing)

1.6%

2 layer (800 hidden) 1.6%

2 layer (800 hidden), distorted
images

0.7%

6 layers, distorted images
784/2500/2000/1500/1000/500/10

0.35%

conv. net “LeNet-1” 1.1%

committee of 35 conv. nets, with
distorted images

0.23%

Er
ro

r
ra

te

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Homework
Explore how well the network can do if you add noise
to the images (or you occlude parts of them!)

Apply image recognition to some algorithmically
generated images

“circle” “square”

Note: Either use the existing net, or train it explicitly on such noisy/occluded images!

Convolutional Networks
Exploit translational invariance!

different image, same meaning!

F

new(x) =

Z
K(x� x

0)F (x0)dx0

“kernel”

K Ksmoothing
(approx.) derivative

x x’

K

Convolutions

In physics:
- Green’s functions for linear
partial differential equations
(diffusion, wave equations)
- Signal filtering

Image filtering: how to blur...

original pixel resulting pattern

Image filtering: how to obtain contours...

+
-

-
+

Scan kernel over original (source) image
Alternative view:

(& calculate linear, weighted
superposition of original pixel

values)

“Fully connected (dense) layer”

w1

w2

w3

“Convolutional layer”

Same weights (=”kernel”=”filter”) used for each
neuron in the top layer!

filter (kernel) size

“Convolutional layer”

Same weights (=”kernel”=”filter”) used for each
neuron in the top layer!

filter (kernel) size

... ...
(simplified picture)

Scan kernel over original (source) image
Different from image processing:
learn the kernel weights!

Convolutional neural networks

Drastic reduction of the number of weights stored!

fully connected: N2 (N=size of layer/image)
convolutional: M (M=size of kernel)

independent of the size of the image!
lower memory consumption, improved speed

Exploit translational invariance (features learned in one
part of an image will be automatically recognized in
different parts)

Several filters (kernels)

e.g. one for smoothing, one for contours, etc.

several ‘channels’

net.add(Conv2D(input_shape=(N,N,1),
filters=20, kernel_size=[11,11],
activation='relu',padding='same'))

in keras:
2D convolutional layer

input: NxN image, only 1 channel [need to
specify this only for first layer after input]

next layer will be NxNx20 (20 channels!) kernel size
(region)

what to do at borders (here:
force image size to remain

the same)

Reducing the resolution

“max pooling”
“average pooling” max or avg

net.add(AveragePooling2D(pool_size=8))

in keras:

Enlarging the image size (again)

net.add(UpSampling2D(size=8))

in keras:

(simply repeats values)

A fully developed convolutional net

conv

su
bs

am
pl

in
g

conv

su
bs

am
pl

in
g

dense
dense

dense

ou
tp

ut

in
pu

t

conv

“Channels”

3 channels 6 channels

MxM image MxM image

in this example: will need 6x3=18 filters, each
of size KxK (thus: store 18xKxK weights!)

in any output channel, each pixel receives input from KxK
nearby pixels in ANY of the input channels (each of those
input channel pixel regions is weighted by a different
filter); contributions from all the input channels are
linearly superimposed

Note: keras automatically takes care of all of this, need only specify number of channels

K
K

Handwritten digits recognition with a convolutional net

conv

su
bs

am
pl

in
g

/4

dense
(softmax)

ou
tp

ut

in
pu

t

28x28
7 x (28x28)

7 x (7x7)

(7 channels)

initialize the convolutional network
def init_net_conv_simple():
 global net, M
 net = Sequential()
 net.add(Conv2D(input_shape=(M,M,1), filters=7,
kernel_size=[5,5],activation='relu',padding='same'))
 net.add(AveragePooling2D(pool_size=4))
 net.add(Flatten())
 net.add(Dense(10, activation='softmax'))
 net.compile(loss='categorical_crossentropy',
optimizer=optimizers.SGD(lr=1.0),
metrics=['categorical_accuracy'])

needed for transition to dense layer!

note: M=28 (for 28x28 pixel images)

epoch

accuracy on training data

accuracy on validation data

Error on test data: <1.8%

The convolutional filters

Interpretation: try to extract common
features of input images!

“diagonal line”, “curve bending towards
upper right corner”, etc.

An aside: Gabor filters

(Image: Wikipedia)

2D Gauss times sin-function

encodes orientation and
spatial frequency

useful for feature extraction in images
(e.g. detect lines or contours of certain
orientation)

believed to be good
approximation to first
stage of image processing
in visual cortex

Let’s get more ambitious! Train a two-stage
convolutional net!

Handwritten digits recognition with a convolutional net

conv

su
bs

am
pl

in
g

/2

conv

su
bs

am
pl

in
g

/2

dense
(softmax)

ou
tp

ut

in
pu

t

8x(14x14)
8x(28x28)28x28

8x(14x14)
8x(7x7)

Does not learn at all! Gets 90% wrong!

epoch

accuracy on training data

accuracy on
validation data

Error on test data: ~90%

epoch

accuracy on training data

accuracy on
validation data

Error on test data: ~1.7%

same net, with adaptive learning rate
(see later; here: ‘adam’ method)

Homework

try and extract the filters after longer
training (possibly with enforcing sparsity)

Unsupervised learning

Extracting the crucial features of a large
class of training samples without any
guidance!

Autoencoder

- Goal: reproduce the input (image) at the output
- An example of unsupervised learning (no need for
‘correct results’ / labeling of data!)
- Challenge: feed information through some small
intermediate layer (‘bottleneck’)
- This can only work well if the network learns to
extract the crucial features of the class of input
images
- a form of data compression (adapted to the
typical inputs)

encoder decoder

‘bottleneck’

Still: need a lot of training examples
Here: generate those examples algorithmically

for example: randomly placed circle

conv /4
conv /4

conv
x4 conv x4 conv

(20 channels in all intermediate steps)

Our convolutional autoencoder network

32x32 32x32

training batches (batchsize: 10)

su
m

 o
f q

ua
dr

at
ic

 d
ev

ia
tio

n

cost function for a single test image

input

output

Can make it even more challenging: produce a
cleaned-up version of a noisy input image!

“denoising autoencoder”

Stacking autoencoders

(re-use weights from previous stage)

“greedy layer-wise training”

train

train

fixed

fixed

train

train
(and so on, for more
and more layers)

afterwards can ‘fine-tune’ weights by
training all of them together, in the large
multi-layer network

dense
softmax

category

Using the encoder part of
an autoencoder to build a
classifier (trained via
supervised learning)

inputinput

output=input

training the autoencoder = “pretraining”

input

output=input

Sparse autoencoder:

force most neurons in the inner layer to
be zero (or close to some average
value) most of the time, by adding a
modification to the cost function

This forces useful higher-level
representations even when there are
many neurons in the inner layer

(otherwise the network could just 1:1
feed through the input)

- Autoencoders are useful for pretraining,
but nowadays one can train deep networks
(with many layers) from scratch
- Autoencoders are an interesting example
of unsupervised (or rather self-supervised)
learning, but detailed reconstruction of the
input (which they attempt) may not be the
best method to learn important abstract
features

- Autoencoders in principle allow data
compression, but are nowadays not competitive
with generic algorithms like e.g. jpeg

What are autoencoders good for?

- Still, one may use the compressed
representation for visualizing higher-level
features of the data

Imagine a purely linear autoencoder: which weights
will it select?

An aside: Principal Component Analysis (PCA)

linear no f(z)!

Challenge: number of neurons in hidden layer is
smaller than the number of input/output neurons

Each inner-layer neuron can be understood as the
projection of the input onto some vector
(determined by the weights belonging to that neuron)

(dense)

(dense)

linear

P̂ =
MX

j=1

|vji hvj |Set restricted projector

where M is the number of neurons in the hidden layer, which is
smaller than the size of the Hilbert space, and the vectors form an
orthonormal basis (that we still want to choose in a smart way)

wjk = hvj |ki
j

k input

hidden layerset
for the input-hidden weights

j

k hidden

outputset
for the hidden-output weights

wjk = hk|vji

the hidden layer neuron values will be the
amplitudes of the input vector in the “v” basis!

Mathematically: try to reproduce a vector (input) as
well as possible with a restricted basis set!

P̂ | iThe network calculates:

Note: in the following, for simplicity, we assume the
input vector to be normalized, although the final
result we arrive at (principal component analysis)
also works for an arbitrary set of vectors

| i ⇡ P̂ | iWe want:

“...for all the typical input vectors”

Choose the vectors “v” to minimize the
average quadratic deviation⌧���| i � P̂ | i

���
2
�

average over all
input vectors | i

Note: We assume the average has
already been subtracted, such that h| ii = 0

D
h | i �

D
 |P̂

EE
=

Solution: Consider the matrix
⇢̂ = h| i h |i

This characterizes fully the ensemble of input
vectors (for the purposes of linear operations)

Diagonalize this (hermitean) matrix, and keep the
M eigenvectors with the largest eigenvalues. These
form the desired set of “v”!

p: probability of having a
particular input vector

[compare density matrix in quantum physics!]

Claim:

[this is the covariance matrix of the vectors]

⇢mn = h m
⇤
ni

=
X

j

pj
��� (j)

ED
 (j)

���

(points=end-points of vectors in the
ensemble)

the two eigenvectors of ⇢̂
An example in a 2D Hilbert space:

rho=dot(transpose(psi),psi)

vals,vecs=linalg.eig(rho)

plt.imshow(reshape(-vecs[:,0],[28,28]),
origin='lower',cmap='binary',interpolation='nearest')

shape(training_inputs)
(50000, 784)

rho will be 784x784 matrix

get eigenvalues- and vectors (already sorted, largest first)

display the 28x28 image belonging to the largest eigenvector

the MNIST images

psi=training_inputs-sum(training_inputs,axis=0)/num_samples
subtract average

Application to the MNIST database

The first 6 PCA components (eigenvectors)

Can compress the information by projecting only on the first M
largest components and then feeding that into a network

All the eigenvalues

The first 100 sum up to more than 90% of the total sum

Visualizing high-dimensional data

Neuron values in some intermediate layer represent
input data in some interesting way, but they are hard
to visualize! [there are more than 2 neurons in such
a layer, typically]

Need some method to project down to 2
dimensions, keeping the distance relation qualitatively
similar: “Which inputs are close to each other, which
are very different?”

Can also apply this to the input data itself directly, or
to some compressed version of it (like PCA
components)!

MNIST sample images, reduced to 2D, using PCA
Obtain PCA, then plot components of each image with respect to two
eigenvectors with largest eigenvalues (as a point in 2D plane)

Different colors = differently labeled images (diff. digits)

component 1

co
m

po
ne

nt
 2

Some trends
visible, but not
well separated!

MNIST sample images, reduced to 2D, using “t-SNE”
[using python program by Laurens van der Maaten]

(starts from 50 PCA components for each image; t-SNE takes about 10min)

Different colors = differently labeled images (diff. digits)

Well-defined
clusters!

Basic idea of dimensionality reduction: reproduce
distances in higher-dimensional space inside the lower-
dimensional “map”, as closely as possible

n-dim. 2-dim.

close
close

x1

x2 x3

y1 y3

y2

Usually not perfectly possible: Remember the
map-maker’s dilemma!

“two-point equidistant projection”
(Wikipedia)

Can define cost-function, that depends on how
close the distances of low-dimensional data points
“y” are to those of high-dimensional points “x”

C =
X

i 6=j

F (|xi � xj |, |yi � yj |)

Then: minimize cost function, using e.g.
gradient descent!

[Can introduce arbitrary (monotonous)
functions of distances]

Points in low-dim. space repel if they are
closer than their counterparts in high-dim.
space, and attract otherwise

2-dim.

attractive forces, if high-dim.
distance is smaller than
represented here in low dim.

ẏj = � @C

@yj

“Stochastic neighbor embedding” (SNE): Define
“probability distributions” that depend not only on
the distance but also include some normalization

pij Probability to pick a pair of
points (i,j). Defined to be larger
if they are close neighbors [in
the high-dim. space]

qij similar for low-dim. space

X

i 6=j

qij = 1
X

i 6=j

pij = 1

VISUALIZING DATA USING T-SNE

where Y (t) indicates the solution at iteration t, η indicates the learning rate, and α(t) represents the
momentum at iteration t.

In addition, in the early stages of the optimization, Gaussian noise is added to the map points
after each iteration. Gradually reducing the variance of this noise performs a type of simulated
annealing that helps the optimization to escape from poor local minima in the cost function. If the
variance of the noise changes very slowly at the critical point at which the global structure of the
map starts to form, SNE tends to find maps with a better global organization. Unfortunately, this
requires sensible choices of the initial amount of Gaussian noise and the rate at which it decays.
Moreover, these choices interact with the amount of momentum and the step size that are employed
in the gradient descent. It is therefore common to run the optimization several times on a data set
to find appropriate values for the parameters.4 In this respect, SNE is inferior to methods that allow
convex optimization and it would be useful to find an optimization method that gives good results
without requiring the extra computation time and parameter choices introduced by the simulated
annealing.

3. t-Distributed Stochastic Neighbor Embedding

Section 2 discussed SNE as it was presented by Hinton and Roweis (2002). Although SNE con-
structs reasonably good visualizations, it is hampered by a cost function that is difficult to optimize
and by a problem we refer to as the “crowding problem”. In this section, we present a new technique
called “t-Distributed Stochastic Neighbor Embedding” or “t-SNE” that aims to alleviate these prob-
lems. The cost function used by t-SNE differs from the one used by SNE in two ways: (1) it uses a
symmetrized version of the SNE cost function with simpler gradients that was briefly introduced by
Cook et al. (2007) and (2) it uses a Student-t distribution rather than a Gaussian to compute the sim-
ilarity between two points in the low-dimensional space. t-SNE employs a heavy-tailed distribution
in the low-dimensional space to alleviate both the crowding problem and the optimization problems
of SNE.

In this section, we first discuss the symmetric version of SNE (Section 3.1). Subsequently, we
discuss the crowding problem (Section 3.2), and the use of heavy-tailed distributions to address this
problem (Section 3.3). We conclude the section by describing our approach to the optimization of
the t-SNE cost function (Section 3.4).

3.1 Symmetric SNE

As an alternative to minimizing the sum of the Kullback-Leibler divergences between the condi-
tional probabilities p j|i and q j|i, it is also possible to minimize a single Kullback-Leibler divergence
between a joint probability distribution, P, in the high-dimensional space and a joint probability
distribution, Q, in the low-dimensional space:

C = KL(P||Q) =∑
i
∑
j
pi j log

pi j
qi j

.

where again, we set pii and qii to zero. We refer to this type of SNE as symmetric SNE, because it
has the property that pi j = p ji and qi j = q ji for ∀i, j. In symmetric SNE, the pairwise similarities in

4. Picking the best map after several runs as a visualization of the data is not nearly as problematic as picking the model
that does best on a test set during supervised learning. In visualization, the aim is to see the structure in the training
data, not to generalize to held out test data.

2583

Want q-distribution to be a close approximation of
the p-distribution:

“Kullback-Leibler divergence”, a way of comparing
probability distributions

VISUALIZING DATA USING T-SNE

that are at a moderate distance from datapoint i will have to be placed much too far away in the
two-dimensional map. In SNE, the spring connecting datapoint i to each of these too-distant map
points will thus exert a very small attractive force. Although these attractive forces are very small,
the very large number of such forces crushes together the points in the center of the map, which
prevents gaps from forming between the natural clusters. Note that the crowding problem is not
specific to SNE, but that it also occurs in other local techniques for multidimensional scaling such
as Sammon mapping.

An attempt to address the crowding problem by adding a slight repulsion to all springs was pre-
sented by Cook et al. (2007). The slight repulsion is created by introducing a uniform background
model with a small mixing proportion, ρ. So however far apart two map points are, qi j can never fall
below 2ρ

n(n−1) (because the uniform background distribution is over n(n−1)/2 pairs). As a result, for
datapoints that are far apart in the high-dimensional space, qi j will always be larger than pi j, leading
to a slight repulsion. This technique is called UNI-SNE and although it usually outperforms stan-
dard SNE, the optimization of the UNI-SNE cost function is tedious. The best optimization method
known is to start by setting the background mixing proportion to zero (i.e., by performing standard
SNE). Once the SNE cost function has been optimized using simulated annealing, the background
mixing proportion can be increased to allow some gaps to form between natural clusters as shown
by Cook et al. (2007). Optimizing the UNI-SNE cost function directly does not work because two
map points that are far apart will get almost all of their qi j from the uniform background. So even
if their pi j is large, there will be no attractive force between them, because a small change in their
separation will have a vanishingly small proportional effect on qi j. This means that if two parts of
a cluster get separated early on in the optimization, there is no force to pull them back together.

3.3 Mismatched Tails can Compensate for Mismatched Dimensionalities

Since symmetric SNE is actually matching the joint probabilities of pairs of datapoints in the high-
dimensional and the low-dimensional spaces rather than their distances, we have a natural way
of alleviating the crowding problem that works as follows. In the high-dimensional space, we
convert distances into probabilities using a Gaussian distribution. In the low-dimensional map, we
can use a probability distribution that has much heavier tails than a Gaussian to convert distances
into probabilities. This allows a moderate distance in the high-dimensional space to be faithfully
modeled by a much larger distance in the map and, as a result, it eliminates the unwanted attractive
forces between map points that represent moderately dissimilar datapoints.

In t-SNE, we employ a Student t-distribution with one degree of freedom (which is the same
as a Cauchy distribution) as the heavy-tailed distribution in the low-dimensional map. Using this
distribution, the joint probabilities qi j are defined as

qi j =
(
1+∥yi− y j∥2

)−1

∑k ̸=l (1+∥yk− yl∥2)−1
. (4)

We use a Student t-distribution with a single degree of freedom, because it has the particularly
nice property that

(
1+∥yi− y j∥2

)−1 approaches an inverse square law for large pairwise distances
∥yi− y j∥ in the low-dimensional map. This makes the map’s representation of joint probabilities
(almost) invariant to changes in the scale of the map for map points that are far apart. It also means
that large clusters of points that are far apart interact in just the same way as individual points, so the
optimization operates in the same way at all but the finest scales. A theoretical justification for our

2585

low-dim. space:

high-dim. space:

VAN DER MAATEN AND HINTON

the low-dimensional map qi j are given by

qi j =
exp

(
−∥yi− y j∥2

)

∑k ̸=l exp(−∥yk− yl∥2)
, (3)

The obvious way to define the pairwise similarities in the high-dimensional space pi j is

pi j =
exp

(
−∥xi− x j∥2/2σ2

)

∑k ̸=l exp(−∥xk− xl∥2/2σ2)
,

but this causes problems when a high-dimensional datapoint xi is an outlier (i.e., all pairwise dis-
tances ∥xi− x j∥2 are large for xi). For such an outlier, the values of pi j are extremely small for
all j, so the location of its low-dimensional map point yi has very little effect on the cost function.
As a result, the position of the map point is not well determined by the positions of the other map
points. We circumvent this problem by defining the joint probabilities pi j in the high-dimensional
space to be the symmetrized conditional probabilities, that is, we set pi j =

p j|i+pi| j
2n . This ensures that

∑ j pi j > 1
2n for all datapoints xi, as a result of which each datapoint xi makes a significant contri-

bution to the cost function. In the low-dimensional space, symmetric SNE simply uses Equation 3.
The main advantage of the symmetric version of SNE is the simpler form of its gradient, which is
faster to compute. The gradient of symmetric SNE is fairly similar to that of asymmetric SNE, and
is given by

δC
δyi

= 4∑
j
(pi j−qi j)(yi− y j).

In preliminary experiments, we observed that symmetric SNE seems to produce maps that are just
as good as asymmetric SNE, and sometimes even a little better.

3.2 The Crowding Problem

Consider a set of datapoints that lie on a two-dimensional curved manifold which is approximately
linear on a small scale, and which is embedded within a higher-dimensional space. It is possible to
model the small pairwise distances between datapoints fairly well in a two-dimensional map, which
is often illustrated on toy examples such as the “Swiss roll” data set. Now suppose that the mani-
fold has ten intrinsic dimensions5 and is embedded within a space of much higher dimensionality.
There are several reasons why the pairwise distances in a two-dimensional map cannot faithfully
model distances between points on the ten-dimensional manifold. For instance, in ten dimensions,
it is possible to have 11 datapoints that are mutually equidistant and there is no way to model this
faithfully in a two-dimensional map. A related problem is the very different distribution of pairwise
distances in the two spaces. The volume of a sphere centered on datapoint i scales as rm, where r is
the radius and m the dimensionality of the sphere. So if the datapoints are approximately uniformly
distributed in the region around i on the ten-dimensional manifold, and we try to model the dis-
tances from i to the other datapoints in the two-dimensional map, we get the following “crowding
problem”: the area of the two-dimensional map that is available to accommodate moderately distant
datapoints will not be nearly large enough compared with the area available to accommodate nearby
datapoints. Hence, if we want to model the small distances accurately in the map, most of the points

5. This is approximately correct for the images of handwritten digits we use in our experiments in Section 4.

2584

VISUALIZING DATA USING T-SNE

2. Stochastic Neighbor Embedding

Stochastic Neighbor Embedding (SNE) starts by converting the high-dimensional Euclidean dis-
tances between datapoints into conditional probabilities that represent similarities.1 The similarity
of datapoint x j to datapoint xi is the conditional probability, p j|i, that xi would pick x j as its neighbor
if neighbors were picked in proportion to their probability density under a Gaussian centered at xi.
For nearby datapoints, p j|i is relatively high, whereas for widely separated datapoints, p j|i will be
almost infinitesimal (for reasonable values of the variance of the Gaussian, σi). Mathematically, the
conditional probability p j|i is given by

p j|i =
exp

(
−∥xi− x j∥2/2σ2i

)

∑k ̸=i exp
(
−∥xi− xk∥2/2σ2i

) , (1)

where σi is the variance of the Gaussian that is centered on datapoint xi. The method for determining
the value of σi is presented later in this section. Because we are only interested in modeling pairwise
similarities, we set the value of pi|i to zero. For the low-dimensional counterparts yi and y j of the
high-dimensional datapoints xi and x j, it is possible to compute a similar conditional probability,
which we denote by q j|i. We set2 the variance of the Gaussian that is employed in the computation
of the conditional probabilities q j|i to 1√

2 . Hence, we model the similarity of map point y j to map
point yi by

q j|i =
exp

(
−∥yi− y j∥2

)

∑k ̸=i exp(−∥yi− yk∥2)
.

Again, since we are only interested in modeling pairwise similarities, we set qi|i = 0.
If the map points yi and y j correctly model the similarity between the high-dimensional data-

points xi and x j, the conditional probabilities p j|i and q j|i will be equal. Motivated by this observa-
tion, SNE aims to find a low-dimensional data representation that minimizes the mismatch between
p j|i and q j|i. A natural measure of the faithfulness with which q j|i models p j|i is the Kullback-
Leibler divergence (which is in this case equal to the cross-entropy up to an additive constant). SNE
minimizes the sum of Kullback-Leibler divergences over all datapoints using a gradient descent
method. The cost functionC is given by

C =∑
i
KL(Pi||Qi) =∑

i
∑
j
p j|i log

p j|i
q j|i

, (2)

in which Pi represents the conditional probability distribution over all other datapoints given data-
point xi, and Qi represents the conditional probability distribution over all other map points given
map point yi. Because the Kullback-Leibler divergence is not symmetric, different types of error
in the pairwise distances in the low-dimensional map are not weighted equally. In particular, there
is a large cost for using widely separated map points to represent nearby datapoints (i.e., for using

1. SNE can also be applied to data sets that consist of pairwise similarities between objects rather than high-dimensional
vector representations of each object, provided these simiarities can be interpreted as conditional probabilities. For
example, human word association data consists of the probability of producing each possible word in response to a
given word, as a result of which it is already in the form required by SNE.

2. Setting the variance in the low-dimensional Gaussians to another value only results in a rescaled version of the final
map. Note that by using the same variance for every datapoint in the low-dimensional map, we lose the property
that the data is a perfect model of itself if we embed it in a space of the same dimensionality, because in the high-
dimensional space, we used a different variance σi in each Gaussian.

2581

Choices made for t-SNE
[for heuristics behind this see Hinton & v.d.Maaten 2008]

q is comparatively larger at long distances: allows
points in low-dim. space to spread out for
intermediate distances (they do not have as
much space as high-dim. points! need to give
them more room!)

(Gaussians dist.)

(Cauchy dist.=
“Student-t dist.”)

VAN DER MAATEN AND HINTON

High−dimensional distance >

Lo
w
−d

im
en

si
on

al
 d

is
ta

nc
e

>

0
2
4
6
8
10
12
14
16
18

(a) Gradient of SNE.

High−dimensional distance >

Lo
w
−d

im
en

si
on

al
 d

is
ta

nc
e

>

−4
−2
0
2
4
6
8
10
12
14

(b) Gradient of UNI-SNE.

High−dimensional distance >

Lo
w
−d

im
en

si
on

al
 d

is
ta

nc
e

>

−1

−0.5

0

0.5

1

(c) Gradient of t-SNE.

Figure 1: Gradients of three types of SNE as a function of the pairwise Euclidean distance between
two points in the high-dimensional and the pairwise distance between the points in the
low-dimensional data representation.

selection of the Student t-distribution is that it is closely related to the Gaussian distribution, as the
Student t-distribution is an infinite mixture of Gaussians. A computationally convenient property
is that it is much faster to evaluate the density of a point under a Student t-distribution than under
a Gaussian because it does not involve an exponential, even though the Student t-distribution is
equivalent to an infinite mixture of Gaussians with different variances.

The gradient of the Kullback-Leibler divergence between P and the Student-t based joint prob-
ability distribution Q (computed using Equation 4) is derived in Appendix A, and is given by

δC
δyi

= 4∑
j
(pi j−qi j)(yi− y j)

(
1+∥yi− y j∥2

)−1
. (5)

In Figure 1(a) to 1(c), we show the gradients between two low-dimensional datapoints yi and y j as
a function of their pairwise Euclidean distances in the high-dimensional and the low-dimensional
space (i.e., as a function of ∥xi− x j∥ and ∥yi− y j∥) for the symmetric versions of SNE, UNI-SNE,
and t-SNE. In the figures, positive values of the gradient represent an attraction between the low-
dimensional datapoints yi and y j, whereas negative values represent a repulsion between the two
datapoints. From the figures, we observe two main advantages of the t-SNE gradient over the
gradients of SNE and UNI-SNE.

First, the t-SNE gradient strongly repels dissimilar datapoints that are modeled by a small pair-
wise distance in the low-dimensional representation. SNE has such a repulsion as well, but its effect
is minimal compared to the strong attractions elsewhere in the gradient (the largest attraction in our
graphical representation of the gradient is approximately 19, whereas the largest repulsion is approx-
imately 1). In UNI-SNE, the amount of repulsion between dissimilar datapoints is slightly larger,
however, this repulsion is only strong when the pairwise distance between the points in the low-
dimensional representation is already large (which is often not the case, since the low-dimensional
representation is initialized by sampling from a Gaussian with a very small variance that is centered
around the origin).

Second, although t-SNE introduces strong repulsions between dissimilar datapoints that are
modeled by small pairwise distances, these repulsions do not go to infinity. In this respect, t-SNE
differs from UNI-SNE, in which the strength of the repulsion between very dissimilar datapoints

2586

The t-SNE “force”:

spring-like gravity”-like at
larger distancessign depends on

match between
low- and high-

dim. distributions

“T-SNE visualization of large-scale neural recordings”
George Dimitriadis, Joana Neto, Adam Kampff

Visualizing the evolution during t-SNE optimization.

http://biorxiv.org/content/early/2016/11/14/087395.figures-only

Multiple electrodes record voltage time-
traces due to nearby spiking neurons: but
which spike belongs to which neuron?

An example application from biophysics

http://biorxiv.org/content/early/2016/11/14/087395.figures-only
http://biorxiv.org/content/early/2016/11/14/087395.figures-only

take neurons
out of a multi-
layer
convolutional
network that
classifies images,
and represent
using t-SNE

(example by
Andrej
Karpathy)

[t-SNE applied
to a 4096-dim.
representation]

http://cs.stanford.edu/people/karpathy/cnnembed/

http://cs.stanford.edu/people/karpathy/cnnembed/
http://cs.stanford.edu/people/karpathy/cnnembed/

take neurons
out of a multi-
layer
convolutional
network that
classifies images,
and represent
using t-SNE

(example by
Andrej
Karpathy)

[t-SNE applied
to a 4096-dim.
representation]

http://cs.stanford.edu/people/karpathy/cnnembed/

http://cs.stanford.edu/people/karpathy/cnnembed/
http://cs.stanford.edu/people/karpathy/cnnembed/

http://cs.stanford.edu/people/karpathy/cnnembed/

take neurons
out of a multi-
layer
convolutional
network that
classifies images,
and represent
using t-SNE

(example by
Andrej
Karpathy)

[t-SNE applied
to a 4096-dim.
representation]

http://cs.stanford.edu/people/karpathy/cnnembed/
http://cs.stanford.edu/people/karpathy/cnnembed/

1.3 millio
n artic

les

paperscape.org

The whole
arXiv preprint
server,
represented as
a 2D map

Paperscape uses a simple physical model (similar to
t-SNE, but more physical).

Between each two papers there are two forces:

- repulsion (anti-gravity inverse-distance force)
- attraction of any paper to all its references by a
linear spring
- also avoid overlap (circle sizes represent number
of citations to that paper)

Every morning, after new papers are announced,
the map of all 1.3 million papers on the arXiv is
re-calculated (takes 3-4 hours)

The quantum
“continent”
[colors represent
arXiv categories]

Artistic representation by Roberto Salazar and
Sebastian Pizarro: “Quantum Earth”

Optimized gradient descent algorithms

How to speed up stochastic gradient descent?

- accelerate (“momentum”) towards minimum
- Automatically choose learning rate
- ...even different rates for different weights

see overview by S. Ruder https://arxiv.org/abs/1609.04747

adagrad

RMSprop

adadelta

adam

divide by RMS of all previous gradients

divide by RMS of last few previous gradients

same, but multiply also by RMS of last few
parameter updates

divide running average of last few gradients by
RMS of last few gradients (* with corrections
during earliest steps)

Summary: a few gradient update methods

adam often works best

https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747

Please download “Part Two” to continue

http://machine-learning-for-physicists.org

http://machine-learning-for-physicists.org
http://machine-learning-for-physicists.org

