Machine

 Leanningior

 Leanningior
 Physicists

Summer 2017
University of Erlangen-Nuremberg Florian Marquardt
Florian.Marquardt@fau.de http://machine-learning-for-physicists.org

Optimized gradient descent algorithms

How to speed up stochastic gradient descent?

- accelerate ("momentum") towards minimum
- Automatically choose learning rate
- ...even different rates for different weights

Summary: a few gradient update methods

 see overview by S. Ruder https://arxiv.org/abs/|609.04747adagrad
RMSprop adadelta
adam
divide by RMS of last few previous gradients
same, but multiply also by RMS of last few parameter updates
divide by RMS of all previous gradients
divide running average of last few gradients by RMS of last few gradients (* with corrections during earliest steps)

$$
g_{z}=\frac{\partial C}{\partial \theta_{f}}
$$

Standard:

$$
\dot{\theta}=-\eta g
$$

or in discrete time steps

$$
\theta^{(t+1)}=\theta^{(t)}-\eta g^{(t)}
$$

Idea: rescale according to estimate of typical sire of g

Solution: Only take RMS of
"last few gradients"

$$
V^{(t)}=\gamma V^{(t-1)}+(1-\gamma)\left[g^{(t)}\right]^{2}
$$

decay term (e.g. $\gamma \sim 0.9)$

$$
\Rightarrow V^{(t)}=(1-\gamma) \sum_{t^{\prime} \leq t} \underbrace{\gamma^{t-t^{\prime}}}_{\text {exponential decay }} \cdot\left[g^{\left(t^{\prime}\right)}\right]^{2}
$$

exponential decay of earlier contributions
\Rightarrow Roughly: contributions from $\sim \frac{1}{1-\gamma}$ last toms e.g. for time-independent $g^{(t)}=g$:

$$
V^{(t)}=(1-\gamma) \underbrace{\left.\sum_{t^{\prime} \leqslant t} \gamma^{t-t^{\prime}}\right)}_{\frac{1}{1-\gamma}} g^{2}=g^{2}
$$

"RMSprop"

$$
\Delta \theta_{j}^{(t)}=-\eta \frac{g_{j}^{t}}{\sqrt{V_{j}^{(t)}+\varepsilon}}
$$

"adadelta"

$$
\begin{aligned}
& \widetilde{V}^{(t)}=\gamma \widetilde{V}^{(t-1)}+(1-\gamma)\left[\Delta \theta^{(t)}\right]^{2} \\
& \Delta \theta^{(t)}=-\underbrace{\frac{\widetilde{V}^{(t-1)}}{V^{(t)}} g^{(t)}}_{\text {"ho leoming rate } \eta^{2}}
\end{aligned}
$$

$$
m^{(t)}=\beta m^{(t-1)}+(1-\beta) g^{(t)}
$$

$V^{(t)}$ like before
Little problem: $m^{(t)} \approx 0, V^{(t)} \approx 0$ in
first steps

\Rightarrow correct via

$$
\begin{aligned}
& \hat{m}^{(t)}=\frac{m^{(t)}}{1-\beta^{t}} \\
& \hat{V}^{(t)}=\frac{V^{(t)}}{1-\gamma^{t}}
\end{aligned}
$$

\Rightarrow set $\Delta \theta^{(t)}=-\eta \frac{\hat{m}^{(t)}}{\sqrt{\hat{V}^{(t)}+\varepsilon}} \quad \begin{aligned} & \beta \approx 0.9 \\ & \gamma=0.999 \\ & \varepsilon \approx 10^{-8}\end{aligned}$

Recurrent neural networks

Networks "with memory"
Useful for analyzing time-evolution (time-series of data), for analyzing and translating sentences, for control/feedback (e.g. robotics or action games), and many other things

Could use a convolutional network!

output

input

filter size $=$ memory time

Long memories with convolutional nets are challenging:

- would need large filter sizes
- even then, would need to know required memory time beforehand
- can expand memory time efficiently by multilayer network with subsampling (pooling), but this is still problematic for precise long-term memory

But: may be OK for some physics applications! (problems local in time, with short memory)

Solution: Recurrent Neural Networks (RNN)

output

Advantage: in principle this could give arbitrarily long memory!

Note: each circle may represent multiple neurons (i.e. a layer)

Solution: Recurrent Neural Networks (RNN)

time

Note: the weights are not time-dependent, i.e. need to store only one set of weights (similar to convolutional net)

output
 hidden
 input

time
"correct answer" known here

"Backpropagation through time"

Long memories with recurrent networks are challenging, due to a feature of backpropagation:
"Exploding gradients" / "Vanishing gradients"

Backpropagation through many layers (in a deep network) or through many time-steps (in a recurrent network):

Something like

$$
\Delta_{t-1}=M_{t} \Delta_{t}
$$

$\begin{aligned} & \text { Depending on } \\ & \text { typical } \\ & \text { eigenvalues of } \\ & \text { the matrices } \mathrm{M}:\end{aligned}$$\underbrace{|\Delta|}_{\text {backprop. steps }}$

Long short-term memory (LSTM)

Why this name? "Long-term memory" would be the weights that are adapted during training and then stored forever. "Short-term memory" is the inputdependent memory we are talking about here."Long short-term memory" tries to have long memory times in a robust way, for this short-term memory. Sepp Hochreiter and Jürgen Schmidhuber, I997
Main idea: determine read/write/delete operations of a memory cell via the network (through other neurons) Most of the time, a memory neuron just sits there and is not used/changed!

LSTM: Forget gate (delete)

c_{t-1}
 memory cell content

LSTM: Forget gate (delete)

Calculate "forget gate":

Obtain new memory content:

$$
c_{t}=f * c_{t-1}
$$

elementwise product

NEW: for the first time, we are multiplying neuron values!

LSTM: Forget gate (delete)

Backpropagation

memory

 cell content

The multiplication * splits the error backpropagation into two branches
product rule:

$$
\frac{\partial f_{j} c_{t-1, j}}{\partial w_{*}}=\frac{\partial f_{j}}{\partial w_{*}} c_{t-1, j}+f_{j} \frac{\partial c_{t-1, j}}{\partial w_{*}}
$$

(Note: if time is not specified, we are referring to t)

LSTM: Forget gate (delete)

LSTM: Write new memory value

both delete and write together:

$$
c_{t}=f * c_{t-1}+i * \tilde{c}_{t}
$$

forget new value

LSTM: Read (output) memory value

LSTM: exploit previous memory output ' h '

make f,i,o etc. at time t depend on output ' h ' calculated in previous time step!
(otherwise: 'h' could only be used in higher layers, but not to control memory access in present layer)

$$
f=\sigma\left(W^{(f)} x_{t}+U^{(f)} h_{t-1}+b^{(f)}\right)
$$

...and likewise for every other quantity!
Thus, result of readout can actually influence subsequent operations (e.g.: readout of some selected other memory cell!)

Sometimes, o is even made to depend on c_{t}

LSTM: backpropagation through time is OK

As long as memory content is not read or written, the backpropagation gradient is trivial:

$$
\begin{aligned}
& c_{t}=c_{t-1}=c_{t-2}=\ldots \\
& \frac{\partial c_{t}}{\partial w_{*}}=\frac{\partial c_{t-1}}{\partial w_{*}}=\frac{\partial c_{t-2}}{\partial w_{*}}=\ldots
\end{aligned}
$$

(deviation vector multiplied by I)
During those 'silent' time-intervals: No explosion or vanishing gradient!

Adding an LSTM layer with 10 memory cells:
Each of those cells has the full structure, with $\mathbf{f , i , 0}$ gates and the memory content \mathbf{c}, and the output \mathbf{h}.

```
rnn.add(LSTM(10, return_sequences=True))
    whether to return the full
    time sequence of outputs, or only
    the output at the final time
```

Two LSTM layers (input > LSTM > LSTM=output), taking an input of 3 neuron values for each time step and producing a time sequence with 2 neuron values for each time step
rnn.add(LSTM(2, return_sequences=True))
rnn. compile(loss='mean_squared_error',
optimizer='adam' , metrics=['accuracy'])

Example:A network for recall

(see code on website)
input time sequence

desired output time sequence

Example:A network that counts down

(see code on website)
input time sequence

desired output time sequence

Output of the recall network, evolving during training (for a fixed input sequence)

Learning episode (batch of 20 for each episode)

Output of the countdown network, evolving during training (for a fixed input sequence)

Learning episode (batch of 20 for each episode)

Character generation

input sequence
$\xrightarrow[\text { (characters in one-hot encoding) }]{\mathrm{T} H \mathrm{E} \text {) } \mathrm{t} \text { time }}$
desired output: predict next character
(H)
network will output probability for each possible character, at each time step

ABCDEFGHIJKLMNOPQRSTUVWXYZ_
(example for second time-step)

Character generation

Example by Andrej Karpathy

training on MBs of text

tyntd-iafhatawiaoihrdemot lytdws e,tfti, astai fogoh eoase rrranbyne 'nhthnee e plia tklrgd t o idoe ns,smtt h ne etie $h, h r e g t r s$ nigtike,aoaenns lng
"Tmont thithey" fomesscerliund
Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on
aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."
we counter. He stutn co des. His stanted out one ofler that concossions and was to gearang reay Jotrets and with fre colt otf paitt thin wall. Which das stimn

Aftair fall unsuch that the hall for Prince Velzonski's that me of her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort how, and Gogition is so overelical and ofter.
"Why do what that day," replied Natasha, and wishing to himself the fact the princess, Princess Mary was easier, fed in had oftened him. Pierre aking his soul came to the packs and drove up his father-in-law women.

Train a network that is eventually able to carry out sums or differences:

$$
\begin{array}{ll}
\text { input } & 3+5=? ? \\
\text { output } & \ldots .08 \\
\text { input } & 7-5=? ? \\
\text { output } & \ldots .02
\end{array}
$$

How do you encode the input/output sequences? What happens when the result has two digits? etc.

Word vectors

simple one-hot encoding of words needs large vectors (and they do not carry any special meaning):

$$
\begin{aligned}
& \begin{array}{rlllllllllllllll}
\text { "warm" } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \ldots \\
& \text { dimension: number of words in dictionary }
\end{aligned}
$$

word2vec - reduction to vectors in much lower dimension, where similar words lie closer together:

```
"warm" 0.3 0 0.1)
```


Word vectors: recurrent net for training

Mikolov,Yih, Zweig 20I3

$$
\mathrm{w}(\mathrm{t}) \longrightarrow \mathrm{s}(\mathrm{t}) \longrightarrow y(\mathrm{t})
$$

predicted next word (probabilities for each word in vocab.; dimension D) size of dictionary)

$$
\begin{gathered}
\mathbf{N \times D} \quad \mathbf{N} \mathbf{N} \mathbf{N} \\
\mathbf{s}(t)=f(\mathbf{U w}(t)+\mathbf{W} \mathbf{s}(t-1)) \\
\mathbf{D \times N} \\
\mathbf{y}(t)=g(\mathbf{V} \mathbf{s}(t)),
\end{gathered}
$$

where

$$
\begin{array}{rr}
f(z)=\frac{1}{1+e^{-z}}, & g\left(z_{m}\right)=\frac{e^{z_{m}}}{\sum_{k} z^{z_{k}}} . \\
\text { sigmoid } & \text { SOFTMAX }
\end{array}
$$

Word vectors: how to train them

Predicting the probability of any word in the dictionary, given the context words (most recent word): very expensive!

Alternative:
Noise-contrastive estimation: provide a few noisy (wrong) examples, and train the model to predict that they are fake (but that the true one is correct)!

Word vectors: how to train them

Two approaches:

"continuous bag of words" Context words \longrightarrow word
"skip-gram" word \longrightarrow context words

Example dataset:

the quick brown fox jumped over the lazy dog
word
quick
over
lazy context words (here: just surrounding words)
the, brown
jumped, the
the, dog

Word vectors: how to train them

Model tries to predict:

prob. that w is the correct word, given the context word h
parameters of the model, i.e. weights, biases, and entries of embedding vectors

$$
P_{\theta}(w, h)=\sigma\left(W_{j k} e_{k}(h)+b_{j}\right)
$$

j: index for word w in dictionary
k : index in embedding vector [Einstein sum]
$e(h)$: embedding vector for word h
W,b: weights, biases
At each time-step: go down the gradient of

$$
C^{(t)}=\ln P_{\theta}\left(w_{t}, h\right)+\sum_{\tilde{\tilde{w}}} \ln \left(1-P_{\theta}(\tilde{w}, h)\right)
$$

Word vectors encode meaning

Mikolov,Yih, Zweig 2013

$$
\begin{aligned}
& \text { car-cars ~ tree-trees } \\
& \text { (subtracting the word vectors on each } \\
& \text { side yields approx. identical vectors) }
\end{aligned}
$$

Word vectors encode meaning

Mikolov, Yih, Zweig 2013

Word vectors encode meaning

Mikolov et al. 2013 "Distributed Representations of Words and Phrases and their Compositionality"

Country and Capital Vectors Projected by PCA

Word vectors in keras

Layer for mapping word indices (integer numbers representing position in a dictionary) to word vectors (of length EMBEDDING_DIM), for input sequences of some given length

```
embedding_layer = Embedding(len(word_index) + 1,
    EMBEDDING_DIM,
    input_length=MAX_SEQUENCE_LENGTH)
```

Helper routines for converting actual text into a sequence of word indices. See especially:
function/class
Tokenizer
pad_sequences
(and others)
Search for "GloVe word embeddings": 800 MB database pre-trained on a 2014 dump of the English Wikipedia, encoding 400 k words in 100 -dimensional vectors

Reinforcement learning

fully observed vs. partially observed "state" of the environment

Self-driving cars, robotics:
Observe immediate environment \& move
Games:
Observe board \& place stone
Observe video screen \& move player
Challenge: the "correct" action is not known! Therefore: no supervised learning!

Reward will be rare (or decided only at end)

Reinforcement learning

Use reinforcement learning:

Training a network to produce actions based on rare rewards (instead of being told the 'correct' action!)

Challenge:We could use the final reward to define a cost function, but we cannot know how the environment reacts to a proposed change of the actions that were taken!
(unless we have a model of the environment)

"State"=full map "Action"=move Reward e.g. based on how many
"treasures" were collected

Policy Gradient

=REINFORCE (Williams 1992):The simplest model-free general reinforcement learning technique

Basic idea: Use probabilistic action choice. If the reward at the end turns out to be high, make all the actions in this sequence more likely (otherwise do the opposite)
This will also sometimes reinforce 'bad' actions, but since they occur more likely in trajectories with low reward, the net effect will still be to suppress them!

Policy Gradient

Probabilistic policy:

Probability to take action a, given the current state s

Environment: makes (possibly stochastic) transition to a new state s', and possibly gives a reward r
Transition function $\quad P\left(s^{\prime} \mid s, a\right)$

Policy Gradient

Probability for having a certain trajectory of actions and states:

product over time steps

$$
P_{\theta}(\tau)=\prod_{t} P\left(s_{t+1} \mid s_{t}, a_{t}\right) \pi_{\theta}\left(a_{t} \mid s_{t}\right)
$$

trajectory: $\quad \tau=(\mathbf{a}, \mathbf{s})$

$$
\begin{aligned}
& \mathbf{a}=a_{0}, a_{1}, a_{2}, \ldots \\
& \mathbf{s}=s_{1}, s_{2}, \ldots \text { (state } 0 \text { is fixed) }
\end{aligned}
$$

Expected overall reward: sum over all trajectories

$$
\bar{R}=E[R]=\sum_{\tau} P_{\theta}(\tau) R(\tau) 一 \underset{\substack{\text { renard for rhis seauence (sum over } \\ \text { indididual rewards } r \text { rof all it ines) }}}{ }
$$

sum over all actions at all times and over all states at all times >0

$$
\sum_{\tau} \cdots=\sum_{a_{0}, a_{1}, a_{2}, \ldots, s_{1}, s_{2}, \ldots} \ldots
$$

Try to maximize expected reward by changing parameters of policy:

$$
\frac{\partial \bar{R}}{\partial \theta}=?
$$

Policy Gradient

$$
\frac{\partial \bar{R}}{\partial \theta}=\sum_{t} \sum_{\tau} R(\tau) \underbrace{\frac{\partial \pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\partial \theta} \frac{1}{\pi_{\theta}\left(a_{t} \mid s_{t}\right)}}_{\frac{\partial \ln \pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\partial \theta}} \Pi_{t^{\prime}} P\left(s_{t^{\prime}+1} \mid s_{t^{\prime}}, a_{t^{\prime}}\right) \pi_{\theta}\left(a_{t^{\prime}} \mid s_{t^{\prime}}\right)
$$

Main formula of policy gradient method:

$$
\frac{\partial \bar{R}}{\partial \theta}=\sum_{t} E\left[R \frac{\partial \ln \pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\partial \theta}\right]
$$

Stochastic gradient descent:

$$
\Delta \theta=\eta \frac{\partial \bar{R}}{\partial \theta}
$$

where $E[\ldots]$ is approximated via the value for one trajectory (or a batch)

Policy Gradient

$$
\frac{\partial \bar{R}}{\partial \theta}=\sum_{t} E\left[R \frac{\partial \ln \pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\partial \theta}\right]
$$

Increase the probability of all action choices in the given sequence, depending on size of reward R. Even if $R>0$ always, due to normalization of probabilities this will tend to suppress the action choices in sequences with lower-than-average rewards.

Abbreviation:

$$
\begin{aligned}
G_{k}=\frac{\partial \ln P_{\theta}(\tau)}{\partial \theta_{k}} & =\sum_{t} \frac{\partial \ln \pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\partial \theta_{k}} \\
\frac{\partial \bar{R}}{\partial \theta_{k}} & =E\left[R G_{k}\right]
\end{aligned}
$$

Policy Gradient: reward baseline

Challenge: fluctuations of estimate for reward gradient can be huge. Things improve if one subtracts a constant baseline from the reward.

$$
\begin{aligned}
\frac{\partial \bar{R}}{\partial \theta} & =\sum_{t} E\left[(R-b) \frac{\partial \ln \pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\partial \theta}\right] \\
& =E[(R-b) G]
\end{aligned}
$$

This is the same as before. Proof:
$E\left[G_{k}\right]=\sum_{\tau} P_{\theta}(\tau) \frac{\partial \ln P_{\theta}(\tau)}{\partial \theta_{k}}=\frac{\partial}{\partial \theta_{k}} \sum_{\tau} P_{\theta}(\tau)=0$
However, the variance of the fluctuating random variable ($R-b$) G is different, and can be smaller (depending on the value of b)!

Optimal baseline

$$
\begin{gathered}
X_{k}=\left(R-b_{k}\right) G_{k} \\
\operatorname{Var}\left[X_{k}\right]=E\left[X_{k}^{2}\right]-E\left[X_{k}\right]^{2}=\min \\
\frac{\partial \operatorname{Var}\left[X_{k}\right]}{\partial b_{k}}=0 \\
b_{k}=\frac{E\left[G_{k}^{2} R\right]}{E\left[G_{k}^{2}\right]} \\
G_{k}=\frac{\partial \ln P_{\theta}(\tau)}{\partial \theta_{k}} \\
\Delta \theta_{k}=-\eta E\left[G_{k}\left(R-b_{k}\right)\right]
\end{gathered}
$$

For more in-depth treatment, see David Silver's course on reinforcement learning (University College London):

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

The simplest RL example ever

A random walk, where the probability to go "up" is determined by the policy, and where the reward is given by the final position (ideal strategy: always go up!)
(Note: this policy does not even depend on the current state)

The simplest RL example ever

A random walk, where the probability to go "up" is determined by the policy, and where the reward is given by the final position (ideal strategy: always go up!)
(Note: this policy does not even depend on the current state)
policy $\quad \pi_{\theta}($ up $)=\frac{1}{1+e^{-\theta}} \quad$ reward $\quad R=x(T)$
RL update $\quad \Delta \theta=\eta \sum_{t}\left\langle R \frac{\partial \ln \pi_{\theta}\left(a_{t}\right)}{\partial \theta}\right\rangle$

$$
a_{t}=\text { up or down }
$$

$$
\frac{\partial \ln \pi_{\theta}\left(a_{t}\right)}{\partial \theta}= \pm e^{-\theta} \pi_{\theta}\left(a_{t}\right)= \pm\left(1-\pi_{\theta}\left(a_{t}\right)\right)=\begin{aligned}
& 1-\pi_{\theta}(\text { up }) \text { for up } \\
& -\pi_{\theta}(\text { up }) \text { for down }
\end{aligned}
$$

$$
\sum_{t} \frac{\partial \ln \pi_{\theta}\left(a_{t}\right)^{\text {number of 'up-steps' }}}{\partial \theta}=N_{\mathrm{up}}-N \pi_{\theta}(\text { up })
$$

The simplest RL example ever

reward $\quad R=x(T)=N_{\text {up }}-N_{\text {down }}=2 N_{\text {up }}-N$
RL update $\quad \Delta \theta=\eta \sum_{t}\left\langle R \frac{\partial \ln \pi_{\theta}\left(a_{t}\right)}{\partial \theta}\right\rangle$

$$
a_{t}=\text { up or down }
$$

$$
\left\langle R \sum_{t} \frac{\partial \ln \pi_{\theta}\left(a_{t}\right)}{\partial \theta}\right\rangle=\underset{\substack{\text { (general analytical expression for } \\ \text { average update, rare) }}}{2\left\langle\left(N_{\text {up }}-\frac{N}{2}\right)\left(N_{\text {up }}-\bar{N}_{\text {up }}\right)\right\rangle}
$$

Initially, when $\pi_{\theta}(\mathrm{up})=\frac{1}{2}$:

$$
\Delta \theta=2 \eta\left\langle\left(N_{\mathrm{up}}-\frac{N}{2}\right)^{2}\right\rangle=2 \eta \operatorname{Var}\left(N_{\mathrm{up}}\right)=\eta \frac{N}{2}>0
$$

(binomial distribution!)

The simplest RL example ever

In general:

$$
\begin{aligned}
& \left\langle R \sum_{t} \frac{\partial \ln \pi_{\theta}\left(a_{t}\right)}{\partial \theta}\right\rangle=2\left\langle\left(N_{\text {up }}-\frac{N}{2}\right)\left(N_{\text {up }}-\bar{N}_{\text {up }}\right)\right\rangle \\
& =2\left\langle\left(\left(N_{\text {up }}-\bar{N}_{\text {up }}\right)+\left(\bar{N}_{\text {up }}-\frac{N}{2}\right)\right)\left(N_{\text {up }}-\bar{N}_{\text {up }}\right)\right\rangle \\
& =2 \operatorname{Var} N_{\text {up }}+2\left(\bar{N}_{\text {up }}-\frac{N}{2}\right)\left\langle N_{\text {up }}-\bar{N}_{\text {up }}\right\rangle \\
& =2 \operatorname{Var} N_{\text {up }}=2 N \pi_{\theta}(\text { up })\left(1-\pi_{\theta}(\text { up })\right) \text { (general analytical }
\end{aligned}
$$

 update, fully simplified, extremely rare)

The simplest RL example ever

(This plot for $\mathrm{N}=100$ time steps in a trajectory; eta=0.00I)

Spread of the update step

$$
\begin{array}{cl}
\qquad Y=N_{\text {up }}-\bar{N}_{\text {up }} \quad c=\bar{N}_{\text {up }}-N / 2 & X=(Y+c) Y \\
\text { (Note: to get } \operatorname{Var} \times \text {, we need central moments } & \text { X=update } \\
\text { of binomial distribution up to 4th moment) } & \text { prefept } \\
\text { prefar of 2) }
\end{array}
$$

Optimal baseline suppresses spread!

$$
Y=N_{\mathrm{up}}-\bar{N}_{\mathrm{up}} \quad c=\bar{N}_{\mathrm{up}}-N / 2 \quad X=(Y+c) Y
$$ with optimal baseline:

$$
\begin{aligned}
& \text { Paseline: } \\
& X^{\prime}=(Y+c-b) Y \quad b=\frac{\left\langle Y^{2}(Y+c)\right\rangle}{\left\langle Y^{2}\right\rangle}
\end{aligned}
$$

Note: Many update steps reduce relative spread

M = number of update steps

$$
\begin{gathered}
\Delta X=\sum_{j=1}^{M} X_{j} \\
\langle\Delta X\rangle=M\langle X\rangle \\
\sqrt{\operatorname{Var} \Delta X}=\sqrt{M} \sqrt{\operatorname{Var} X}
\end{gathered}
$$

relative spread

$$
\frac{\sqrt{\operatorname{Var} \Delta X}}{\langle\Delta X\rangle} \sim \frac{1}{\sqrt{M}}
$$

Implement the RL update including the optimal baseline and run some stochastic learning attempts. Can you observe the improvement over the no-baseline results shown here?

Note:You do not need to simulate the individual random walk trajectories, just exploit the binomial distribution.

The second-simplest RL example

See code on website:"SimpleRL_WalkerTarget"

RL in keras: categorical cross-entropy trick

categorical cross-entropy

$$
C=-\sum_{\substack{\text { desired } \\
\text { distribution }}}^{P(a) \ln \pi_{\theta}(a \mid s)} \begin{gathered}
\text { distr. from net } \\
\text { des. } \\
\text {. }
\end{gathered}
$$

Set

$$
P(a)=R
$$

for $\mathrm{a}=\mathrm{action}$ that was taken

$$
P(a)=0
$$

for all other actions a
$\Delta \theta=-\eta \frac{\partial C}{\partial \theta}$
implements policy gradient

"alpha-Go"

Among the major board games,"Go" was not yet played on a superhuman level by any program (very large state space on a 19×19 board!) alpha-Go beat the world's best player in 2017

First: try to learn from human expert players

sampled state-action pairs (s, a), using stochastic gradient ascent to maximize the likelihood of the human move a selected in state s

$$
\Delta \sigma \propto \frac{\partial \log p_{\sigma}(a \mid s)}{\partial \sigma}
$$

We trained a 13-layer policy network, which we call the SL policy network, from 30 million positions from the KGS Go Server. The net-

Silver et al.,"Mastering the game of Go with deep neural networks and tree search" (Google Deepmind team), Nature, January 2016

Second: use policy gradient RL on games played against previous versions of the program

to the current policy. We use a reward function $r(s)$ that is zero for all non-terminal time steps $t<T$. The outcome $z_{t}= \pm r\left(s_{T}\right)$ is the terminal reward at the end of the game from the perspective of the current player at time step $t:+1$ for winning and -1 for losing. Weights are then updated at each time step t by stochastic gradient ascent in the direction that maximizes expected outcome ${ }^{25}$

$$
\Delta \rho \propto \frac{\partial \log p_{\rho}\left(a_{t} \mid s_{t}\right)}{\partial \rho} z_{t}
$$

Silver et al.,"Mastering the game of Go with deep neural networks and tree search" (Google Deepmind team), Nature, January 2016

"alpha-Go"

Silver et al.,"Mastering the game of Go with deep neural networks and tree search" (Google Deepmind team), Nature, January 2016

"alpha-Go"

Policy network

Value network

Silver et al.,"Mastering the game of Go with deep neural networks and tree search" (Google Deepmind team), Nature, January 2016

Q-learning

An alternative to the policy gradient approach

Introduce a quality function Q that predicts the future reward for a given state s and a given action a. Deterministic policy: just select the action with the largest Q !

Q-learning

Introduce a quality function Q that predicts the future reward for a given state s and a given action a. Deterministic policy: just select the action with the largest Q !

$$
Q\left(s_{t}, a_{t}\right)=E\left[R_{t} \mid s_{t}, a_{t}\right]
$$

"Discounted"
(assuming future steps to follow the policy!)
future reward:

$$
R_{t}=\sum_{t^{\prime}=t}^{T} r_{t^{\prime}} \gamma^{t^{\prime}-t}
$$

Reward at time step t: $\quad r_{t}$
Discount factor: $0<\gamma \leq 1$
depends on state and action at time t learning somewhat easier for smaller factor (short memory times)
Note:The ' v alue' of a state is $V(s)=\max _{a} Q(s, a)$ How do we obtain Q?

Q-learning: Update rule

Bellmann equation: (from optimal control theory)

$$
Q\left(s_{t}, a_{t}\right)=E\left[r_{t}+\gamma \max _{a} Q\left(s_{t+1}, a\right) \mid s_{t}, a_{t}\right]
$$

In practice, we do not know the Q function yet, so we cannot directly use the Bellmann equation. However, the following update rule has the correct Q function as a fixed point:

$$
Q^{\text {new }}\left(s_{t}, a_{t}\right)=Q^{\text {old }}\left(s_{t}, a_{t}\right)+\alpha\left(r_{t}+\gamma \max _{a} Q^{\text {old }}\left(s_{t+1}, a\right)-Q^{\text {old }}\left(s_{t}, a_{t}\right)\right)
$$

will be zero, once we have converged to the correct Q
small (<1) update factor

If we use a neural network to calculate Q , it will be trained to yield the "new" value in each step.

Q-learning: Exploration

Initially, Q is arbitrary. It will be bad to follow this Q all the time. Therefore, introduce probability ϵ of random action ("exploration")!

Follow Q:"exploitation"

Do something random (new):"exploration"

$$
" \epsilon \text {-greedy" }
$$

Reduce this randomness later!

Example: Learning to play Atari Video Games

"Human-level control through deep reinforcement learning", Mnih et al., Nature, February 2015

last four 84×84 pixel images as input [=state] motion as output [=action]

Example: Learning to play Atari Video Games

"Human-level control through deep reinforcement learning", Mnih et al., Nature, February 2015

Example: Learning to play Atari Video Games

"Human-level control through deep reinforcement learning", Mnih et al., Nature, February 2015
t -SNE visualization of last hidden layer

Neural networks and spin models

Artifical neuron

Bit

Spin

Neural networks with stochastic transitions, and with some energy functional similar to spin models in physics; e.g. as described by Hopfield and others starting from the 80s

Modeling probability distributions

Goal: Use a neural network to generate previously unseen examples, according to the probability distribution of training samples

One example already mentioned in these lectures: generating new random (but kind-of reasonable) text after seeing lots of it

Example: Generate new images after looking at many, generate handwritten text

The solution will exploit the connection between neural networks and the statistical physics of spin models!

Boltzmann-Gibbs distribution

Probabilities of states of a physical system, in thermal equilibrium?

energy high: less likely

$$
P(s)=\frac{1}{Z} e^{-\frac{E(s)}{k_{B} T}}
$$

probability for state s, in thermal equilibrium

energy low: more likely

$$
Z=\sum_{s^{\prime}} e^{-\frac{E\left(s^{\prime}\right)}{k_{B}^{T}}}
$$

Z for normalization: "partition function"

Problem: for a many-body system, exponentially many states (for example 2^{N} spin states). Cannot go through all of them!

Monte Carlo approach

Place system in some state, make stochastic transitions to other states (with prescribed transition probabilities)

Monte Carlo approach

Time evolution of ensemble?

$$
\Delta P(s)=\sum_{s^{\prime}} P\left(s \leftarrow s^{\prime \prime}\right) P\left(s^{\prime}\right)-P\left(s^{\prime} \leftarrow s\right) P(s)
$$

change in one time-step
$\mathrm{P}(\mathrm{s})=$ probability to find the system in state s (or: fraction of ensemble in this state)

Monte Carlo approach

At long times: stable steady state distribution If we have "detailed balance", i.e. if there exists a distribution $\mathrm{P}(\mathrm{s})$, such that for any pair of states:

$$
\frac{P\left(s \leftarrow s^{\prime}\right)}{P\left(s^{\prime} \leftarrow s\right)}=\frac{P(s)}{P\left(s^{\prime}\right)}
$$

then $\mathrm{P}(\mathrm{s})$ is the long-time distribution!

Monte Carlo approach

Monte Carlo for thermal equilibrium: choose transition probabilities such that $\mathrm{P}(\mathrm{s})$ will be the Boltzmann distribution!

$$
\frac{P\left(s \leftarrow s^{\prime}\right)}{P\left(s^{\prime} \leftarrow s\right)}=e^{\frac{E\left(s^{\prime}\right)-E(s)}{k_{B} T}}
$$

example Metropolis algorithm: pick random spin, calculate energy change for spin flip. Do the flip if it lowers the energy. If the energy increases, only flip with probability $\exp \left(-\Delta E / k_{B} T\right)$

Markov chain

The sequence of visited states forms a so-called "Markov chain"

Markov = transitions without memory

Restricted Boltzmann Machine

"hidden" units \mathbf{h}
"visible" units \mathbf{v}
Each "unit" is like a spin (or a bit) that can be 0 or I

Restricted Boltzmann Machine

"hidden" units \mathbf{h}
"visible" units \mathbf{v}
Each "unit" is like a spin (or a bit) that can be 0 or I

Define "energy" (we will set $\mathrm{k}_{\mathrm{B}} \mathrm{T}=\mathrm{l}$)

$$
E(\mathbf{v}, \mathbf{h})=-\sum_{i \in \text { visible }} a_{i} v_{i}-\sum_{j \in \text { hidden }} b_{j} h_{j}-\sum_{i, j} v_{i} h_{j} w_{i j}
$$

"restricted": no coupling v-v or h-h
w: couplings (weights)
see G. Hinton's guide: http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf

Restricted Boltzmann Machine

"hidden" units \mathbf{h}
"visible" units \mathbf{v}
Each "unit" is like a spin (or a bit) that can be 0 or I

$$
\begin{aligned}
& P(v, h)=\frac{e^{-E(v, h)}}{Z} \quad Z=\sum_{v, h} e^{-E(v, h)} \\
& P(v)=\sum_{h} P(v, h)
\end{aligned}
$$

Goal: adapt weights (and biases), such that the probability distribution of a set of training examples is approximately reproduced by $\mathrm{P}(\mathrm{v})$

$$
P(v) \approx P_{0}(v) \text { —from training samples }
$$

Restricted Boltzmann Machine

"hidden" units \mathbf{h}
"visible" units \mathbf{v}
Each "unit" is like a spin (or a bit) that can be 0 or I
Interpretation: the 'hidden units' represent categories of data (e.g."dog+white+big")

Building a Markov chain

Instead of the full state $s=(v, h)$: Consider alternating transitions between v and h states
Set:

$$
\begin{aligned}
& P(h \leftarrow v)=P(h \mid v)=\frac{P(v, h)}{P(v)} \\
& P(v \leftarrow h)=P(v \mid h)=\frac{P(v, h)}{P(h)}
\end{aligned}
$$

These transition probabilities fulfill detailed balance!

$$
\frac{P(h \leftarrow v)}{P(v \leftarrow h)}=\frac{P(h)}{P(v)}
$$

Thus: $\mathrm{P}(\mathrm{v})$ [and $\mathrm{P}(\mathrm{h})$] are the steady-state distributions!

Building a Markov chain

$$
\begin{aligned}
& Z P(v)=\sum_{h} e^{-E(v, h)}=\sum_{h} e^{\sum_{i} a_{i} v_{i}+\sum_{j} b_{j} h_{j}+\sum_{i, j} v_{i} h_{j} w_{i j}} \\
&=e^{\sum_{i} a_{i} v_{i}} \Pi_{j}\left(1+e^{z_{j}}\right) \\
& \text { with: } \quad z_{j}=b_{j}+\sum_{i} v_{i} w_{i j}
\end{aligned}
$$

where we used: $e^{\sum_{j} X_{j}}=\Pi_{j} e^{X_{j}} \quad \sum_{h} \cdots=\sum_{h_{0}=0,1} \sum_{h_{1}=0,1} \sum_{h_{2}=0,1} \cdots$ Therefore:

$$
P(h \mid v)=\frac{e^{-E(v, h)}}{Z P(v)}=\Pi_{j} \frac{e^{z_{j} h_{j}}}{1+e^{z_{j}}}
$$

Product of probabilities! All the h_{j} are independently distributed, with probabilities:

$$
\begin{aligned}
& P\left(h_{j}=1 \mid v\right)=\frac{e^{z_{j}}}{1+e^{z_{j}}}=\sigma\left(z_{j}\right) \\
& P\left(h_{j}=0 \mid v\right)=1-\sigma\left(z_{j}\right)
\end{aligned}
$$

Building a Markov chain

Given some visible-units state vector v, calculate the probabilities

$$
P\left(h_{j}=1 \mid v\right)=\frac{e^{z_{j}}}{1+e^{z_{j}}}=\underset{\text { sigmoid }}{\sigma\left(z_{j}\right)}
$$

Then assign I or 0 , according to these probabilities, to obtain the new hidden state vector h

Similarly, go from h to a new v ', using:

$$
\begin{aligned}
& P\left(v_{i}^{\prime}=1 \mid h\right)=\sigma\left(z_{i}^{\prime}\right) \\
& z_{i}^{\prime}=a_{i}+\sum_{j} w_{i j} h_{j}
\end{aligned}
$$

Updating the weights

Goal: adapt weights (and biases), such that the probability distribution of a set of training examples is approximately reproduced by $\mathrm{P}(\mathrm{v})$

$$
P(v) \approx P_{0}(v) \text { —from training samples }
$$

Minimize the categorical cross-entropy

$$
C=-\sum_{v} P_{0}(v) \ln P(v)
$$

But now (unlike earlier examples), there are exponentially many values for v, so we cannot simply have a network output $\mathrm{P}(\mathrm{v})$ for all v . Still, let us take the derivative of C with respect to the weights w!

Updating the weights

$$
C=-\sum_{v} P_{0}(v) \ln P(v)
$$

$$
\begin{array}{r}
\frac{\partial}{\partial w_{i j}} \ln P(v)=\frac{\frac{\partial}{\partial w_{i j}} \sum_{h} P(v, h)}{\sum_{h} P(v, h)} \\
Z=\sum_{v^{\prime}, h^{\prime}} e^{-E\left(v^{\prime}, h^{\prime}\right)} \quad=\frac{\frac{\partial}{\partial w_{i j}} \sum_{h} e^{-E(v, h)}}{\sum_{h} e^{-E(v, h)}}-\frac{\frac{\partial}{\partial w_{i j}} \frac{1}{Z}}{\frac{1}{Z}} \\
=\frac{\sum_{h} v_{i} h_{j} e^{-E(v, h)}}{\sum_{h} e^{-E(v, h)}}-\frac{\sum_{v^{\prime}, h^{\prime}} v_{i}^{\prime} h_{j}^{\prime} e^{-E\left(v^{\prime}, h^{\prime}\right)}}{Z}
\end{array}
$$

overall:

$$
\sum_{v} P_{0}(v) \frac{\partial}{\partial w_{i j}} \ln P(v)=\sum_{v, h} v_{i} h_{j} P(h \mid v) P_{0}(v)-\sum_{v^{\prime}, h^{\prime}} v_{i}^{\prime} h_{j}^{\prime} P\left(v^{\prime}, h^{\prime}\right)
$$

Updating the weights

$$
\begin{aligned}
& \sum_{v} P_{0}(v) \frac{\partial}{\partial w_{i j}} \ln P(v)=\sum_{v, h} v_{i} h_{j} P(h \mid v) P_{0}(v)-\sum_{v^{\prime}, h^{\prime}} v_{h}^{\prime} h_{j}^{\prime} P\left(h^{\prime} \mid v^{\prime}\right) P\left(v^{\prime}\right) \\
& \quad \text { easy: draw one training } \\
& \text { sample v, then do one } \\
& \text { Markov chain step from } v \text { to } \\
& \text { h; average over all samples } v
\end{aligned}
$$

hard: need to average over the correct distribution $\mathrm{P}(\mathrm{v})$ belonging to the Boltzmann machine!

Updating the weights

$$
\sum_{v} P_{0}(v) \frac{\partial}{\partial w_{i j}} \ln P(v)=\sum_{v, h} v_{i} h_{j} P(h \mid v) P_{0}(v)-\sum_{v^{\prime}, h^{\prime}} v_{i}^{\prime} h_{j}^{\prime} P\left(h^{\prime} \mid v^{\prime}\right) P\left(v^{\prime}\right)
$$

Could obtain $\mathrm{P}(\mathrm{v})$ by running the Markov chain for really long times! Very expensive!

Rough approximation, used in practice: Just take v^{\prime}, h^{\prime} from the second pair of the chain! [For better approx.: can take a pair further down the chain]

$$
\Delta w_{i j}=\eta\left(\left\langle v_{i} h_{j}\right\rangle-\left\langle v_{i}^{\prime} h_{j}^{\prime}\right\rangle\right)
$$

(averaged over a batch of training samples v starting the chain)

Updating the weights

$$
\Delta w_{i j}=\eta\left(\left\langle v_{i} h_{j}\right\rangle-\left\langle v_{i}^{\prime} h_{j}^{\prime}\right\rangle\right)
$$

(averaged over a batch of training samples v starting the chain) "Contrastive Divergence" (CD) algorithm by G. Hinton

Note:At least we can claim that $P_{0}(v)=P(v)$ would be a fixed point of this update rule, since then the two averages on the right-hand-side yield identical results. Of course, usually the restricted Boltzmann machine will not be able to reach this point, since it cannot represent arbitrary $P(v)$.

$$
\begin{aligned}
\Delta a_{i} & =\eta\left(\left\langle v_{i}\right\rangle-\left\langle v_{i}^{\prime}\right\rangle\right) \\
\Delta b_{j} & =\eta\left(\left\langle h_{j}\right\rangle-\left\langle h_{j}^{\prime}\right\rangle\right)
\end{aligned}
$$

Restricted Boltzmann Machine for MNIST

example from http://deeplearning.net/tutorial/rbm.html

```
79638808388988986933 76658808288988686931 76628808288688686433 76698808988688686931 76638808388688686933 76658808388688686433 96638808388688686933 46638808188688686931 96628808388688686933 96638808388688686633
```


Restricted Boltzmann Machine for MNIST

example from http://deeplearning.net/tutorial/rbm.html
The learned weights for the 100 hidden units

RBM as a starting point

First train RBM, then connect hidden layer to some output layer for supervised learning of classification Idea: RBM provides unsupervised learning of important features in the training set (pre-training)

$$
\begin{aligned}
& \text { output layer } \\
& \text { (e.g. softmax) }
\end{aligned}
$$

"hidden" units \mathbf{h}
"visible" units \mathbf{v}

Deep belief networks

Stack RBMs: First train a simple RBM, then use its hidden units as input to another RBM, and so on
hidden units $\mathbf{h}_{\mathbf{3}}$
hidden units $\mathbf{h}_{\mathbf{2}}$
hidden units $\mathbf{h}_{\mathbf{I}}$
visible units \mathbf{v}
Afterwards, fine-tune weights, e.g. by supervised learning

Application to Quantum Physics

"hidden" units \mathbf{h}
"visible" units \mathbf{v}
$=$ spins of quantum model
Try to solve a quantum many-body problem (quantum spin model) using the following variational ansatz for the wave function amplitudes:

$$
\Psi(\mathcal{S})=\sum_{h} e^{\sum_{j} a_{j} \sigma_{j}^{z}+\sum_{i} b_{i} h_{i}+\sum_{i j} h_{i} \sigma_{j}^{z} W_{i j}} \text { Carleo \&Troyer, Science 2017 }
$$

$\mathcal{S}=\left(\sigma_{1}^{z}, \sigma_{2}^{z}, \ldots, \sigma_{N}^{z}\right)$ one basis state in the many-body Hilbert space

$$
\begin{aligned}
\sigma_{j}^{z} & = \pm 1 \\
h_{i} & = \pm 1
\end{aligned}
$$

This is exactly (proportional to) the RBM representation for $P(v)[$ with $v=S]$!

Application to Quantum Physics

"hidden" units \mathbf{h}
"visible" units \mathbf{v}
=spins of quantum model
Minimize the energy $\frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}$
by adapting the weights W and biases a and b ! [requires additional Monte Carlo simulation, to obtain a stochastic sampling of the gradient with respect to these parameters]
For example: sample probabilities by using Metropolis algorithm, with transition probabilities

$$
P\left(\mathcal{S}^{\prime} \leftarrow \mathcal{S}\right)=\min \left(1,\left|\frac{\Psi\left(\mathcal{S}^{\prime}\right)}{\Psi(\mathcal{S})}\right|^{2}\right)
$$

Application to Quantum Physics

Carleo \& Troyer, Science 2017

Find updates on

http://machine-learning-for-physicists.org

