
Machine
Learning for
Physicists
Summer 2017
University of Erlangen-Nuremberg
Florian Marquardt
Florian.Marquardt@fau.de
http://machine-learning-for-physicists.org

(Image generated by a net with 20 hidden layers)Part Two

mailto:Florian.Marquardt@fau.de
mailto:Florian.Marquardt@fau.de
http://machine-learning-for-physicists.org
http://machine-learning-for-physicists.org

Optimized gradient descent algorithms

How to speed up stochastic gradient descent?

- accelerate (“momentum”) towards minimum
- Automatically choose learning rate
- ...even different rates for different weights

see overview by S. Ruder https://arxiv.org/abs/1609.04747

adagrad

RMSprop

adadelta

adam

divide by RMS of all previous gradients

divide by RMS of last few previous gradients

same, but multiply also by RMS of last few
parameter updates

divide running average of last few gradients by
RMS of last few gradients (* with corrections
during earliest steps)

Summary: a few gradient update methods

adam often works best

https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747

“adagrad”

“RMSprop”

“RMSprop”

“adadelta”

“adam”

Recurrent neural networks

Networks “with memory”

Useful for analyzing time-evolution (time-series of
data), for analyzing and translating sentences, for
control/feedback (e.g. robotics or action games), and
many other things

... ...

Could use a convolutional network!

filter size = memory time

input

output

time

Long memories with convolutional nets are
challenging:

• would need large filter sizes
• even then, would need to know required

memory time beforehand
• can expand memory time efficiently by multi-

layer network with subsampling (pooling), but
this is still problematic for precise long-term
memory

time

signal no important signals
recall
signal!

But: may be OK for some physics applications!
(problems local in time, with short memory)

time

signal no important signals
recall
signal!

Memory

Solution: Recurrent Neural Networks (RNN)

input

output

time

keep
memory

Advantage: in principle this could give arbitrarily long memory!

Note: each circle may represent multiple neurons (i.e. a layer)
Each arrow then represents all possible connections between those
neurons

input

output

time

keep
memory

Solution: Recurrent Neural Networks (RNN)

Note: the weights are not time-dependent, i.e. need to store only one set of
weights (similar to convolutional net)

input

output

time

hidden

input

output

time

hidden

“Backpropagation through time”

“correct answer” known here

Long memories with recurrent networks are
challenging, due to a feature of backpropagation:

“Exploding gradients” / “Vanishing gradients”

Backpropagation through many layers (in a deep
network) or through many time-steps (in a
recurrent network):

Something like �t�1 = Mt�t

backprop. steps backprop. steps

exploding vanishing

(for the
recurrent
network case)

Depending on
typical
eigenvalues of
the matrices M:

|�| |�|

Long short-term memory (LSTM)

Why this name? “Long-term memory” would be the weights that are adapted
during training and then stored forever. “Short-term memory” is the input-
dependent memory we are talking about here. “Long short-term memory”
tries to have long memory times in a robust way, for this short-term memory.

Sepp Hochreiter and Jürgen Schmidhuber, 1997

Main idea: determine read/write/delete operations of a
memory cell via the network (through other neurons)
Most of the time, a memory neuron just sits there and
is not used/changed!

time

signal no important signals
recall
signal!

LSTM: Forget gate (delete)

*
memory
cell content

ct�1 ct

keep:
delete:

ct = 1 ⇤ ct�1

ct = 0 ⇤ ct�1

LSTM: Forget gate (delete)

*

“forget
gate f”

input

memory
cell content

xt

sigmoid
(usually x,b,f are vectors, W
the weight matrix)

Calculate “forget gate”:

Obtain new memory content:

elementwise product

NEW: for the first time, we are multiplying neuron values!

ct = f ⇤ ct�1

ct�1 ct f = �(W (f)
xt + b

(f))

LSTM: Forget gate (delete)

*

“forget
gate f”

input

memory
cell content

xt

Backpropagation

ct�1 ct

@fjct�1,j

@w⇤
=

@fj
@w⇤

ct�1,j + fj
@ct�1,j

@w⇤

(Note: if time is not specified, we are referring to t)

The multiplication * splits the
error backpropagation into two
branches

product rule:

*

LSTM: Forget gate (delete)

*

“forget
gate f”

input

memory
cell content

t-1 t t+1

LSTM: Write new memory value

*
“input
gate i”

input
xt

ct�1 ct

new value

+

ct = f ⇤ ct�1 + i ⇤ c̃t

c̃t

forget new value

both delete and write together:

i = �(W (i)
xt + b

(i))

c̃t = tanh(W (c)
xt + b

(c))

LSTM: Read (output) memory value

*

“output
gate o”

input
xt

ct�1 ct

ht

ht = o ⇤ tanh(ct)
o = �(W (o)

x

t

+ b

(o))

LSTM: exploit previous memory output ‘h’

make f,i,o etc. at time t depend on output ‘h’
calculated in previous time step!

(otherwise: ‘h’ could only be used in higher
layers, but not to control memory access in
present layer)

f = �(W (f)
xt + U

(f)
ht�1 + b

(f))

...and likewise for every other quantity!

ctSometimes, o is even made to depend on

Thus, result of readout can actually influence
subsequent operations (e.g.: readout of some
selected other memory cell!)

LSTM: backpropagation through time is OK

As long as memory content is not read or written, the
backpropagation gradient is trivial:

ct = ct�1 = ct�2 = . . .

(deviation vector multiplied by 1)

@ct
@w⇤

=
@ct�1

@w⇤
=

@ct�2

@w⇤
= . . .

During those ‘silent’ time-intervals: No
explosion or vanishing gradient!

rnn.add(LSTM(10, return_sequences=True))

Adding an LSTM layer with 10 memory cells:

Each of those cells has the full structure, with f,i,o
gates and the memory content c, and the output h.

whether to return the full
time sequence of outputs, or only
the output at the final time

def init_memory_net():
 global rnn, batchsize, timesteps

rnn = Sequential()
 # note: batch_input_shape is
(batchsize,timesteps,data_dim)

 rnn.add(LSTM(5, batch_input_shape=(None,
timesteps, 3), return_sequences=True))

 rnn.add(LSTM(2, return_sequences=True))
 rnn.compile(loss='mean_squared_error',
optimizer='adam', metrics=['accuracy'])

Two LSTM layers (input > LSTM > LSTM=output), taking an
input of 3 neuron values for each time step and producing a
time sequence with 2 neuron values for each time step

5

3

2

input

output

LSTM

LSTM

timetell recall!
0
1
2

0.4

1

1

input time sequence

desired output time sequence

timetell recall
0 0.4

Example: A network for recall
(see code on website)

Example: A network that counts down

timetell
0
1 7

1

input time sequence

desired output time sequence

timesignal!
0

7 steps

1

(see code on website)

TELL

RECALL

Learning episode (batch of 20 for each episode)

tim
e

Output of the recall network, evolving during
training (for a fixed input sequence)

Output of the countdown network, evolving
during training (for a fixed input sequence)

TELL (delay 5)

SIGNAL

Learning episode (batch of 20 for each episode)

tim
e

Character generation

time

input sequence

T H E _ T H E O R Y _ O F _ G E

desired output: predict next character

(characters in one-hot encoding)

H E _ T H E O R Y _ O F _ G E N

network will output probability for each
possible character, at each time step

ABCDEFGHIJKLMNOPQRSTUVWXYZ_

(example for second time-step)

Character generation

Example by Andrej Karpathy

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

"Tmont thithey" fomesscerliund
Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on
aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

we counter. He stutn co des. His stanted out one ofler that concossions and was
to gearang reay Jotrets and with fre colt otf paitt thin wall. Which das stimn

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

training on MBs of text

Homework

Train a network that is eventually able to carry out
sums or differences:

3+5=??
....08

input
output

7-5=??
....02

input
output

How do you encode the input/output
sequences? What happens when the result has
two digits? etc.

Word vectors

simple one-hot encoding of words needs
large vectors (and they do not carry any
special meaning):

tr
ee

bi
rd

ap
pl

e

su
n

de
sk

ho
t

co
ld

w
ar

m

th
at

fu
ll

ni
ce

on
e

tw
o

th
re

e

w
as

1 ...0 0 0 0 0 0 0 0 0 0 0 0 0 0

dimension: number of words in dictionary

word2vec – reduction to vectors in much
lower dimension, where similar words lie
closer together:

0.3 0 0.1 0 2 1.2 0

“warm”

“warm”
“hot”
“cold”

0.2 0 0.2 0 2.5 1.3 0
0.1 0 0 2 0.4 0.2 0.3

“warm”
“hot”

“cold”
“tree”

The remainder of this paper is organized as fol-
lows. In Section 2, we discuss related work; Section
3 describes the recurrent neural network language
model we used to obtain word vectors; Section 4 dis-
cusses the test sets; Section 5 describes our proposed
vector offset method; Section 6 summarizes our ex-
periments, and we conclude in Section 7.

2 Related Work

Distributed word representations have a long his-
tory, with early proposals including (Hinton, 1986;
Pollack, 1990; Elman, 1991; Deerwester et al.,
1990). More recently, neural network language
models have been proposed for the classical lan-
guage modeling task of predicting a probability dis-
tribution over the “next” word, given some preced-
ing words. These models were first studied in the
context of feed-forward networks (Bengio et al.,
2003; Bengio et al., 2006), and later in the con-
text of recurrent neural network models (Mikolov et
al., 2010; Mikolov et al., 2011b). This early work
demonstrated outstanding performance in terms of
word-prediction, but also the need for more compu-
tationally efficient models. This has been addressed
by subsequent work using hierarchical prediction
(Morin and Bengio, 2005; Mnih and Hinton, 2009;
Le et al., 2011; Mikolov et al., 2011b; Mikolov et
al., 2011a). Also of note, the use of distributed
topic representations has been studied in (Hinton
and Salakhutdinov, 2006; Hinton and Salakhutdi-
nov, 2010), and (Bordes et al., 2012) presents a se-
mantically driven method for obtaining word repre-
sentations.

3 Recurrent Neural Network Model

The word representations we study are learned by a
recurrent neural network language model (Mikolov
et al., 2010), as illustrated in Figure 1. This architec-
ture consists of an input layer, a hidden layer with re-
current connections, plus the corresponding weight
matrices. The input vector w(t) represents input
word at time t encoded using 1-of-N coding, and the
output layer y(t) produces a probability distribution
over words. The hidden layer s(t) maintains a rep-
resentation of the sentence history. The input vector
w(t) and the output vector y(t) have dimensional-
ity of the vocabulary. The values in the hidden and

Figure 1: Recurrent Neural Network Language Model.

output layers are computed as follows:

s(t) = f (Uw(t) + Ws(t�1)) (1)

y(t) = g (Vs(t)) , (2)

where

f(z) =
1

1 + e�z
, g(zm) =

ezm

�
k ezk

. (3)

In this framework, the word representations are
found in the columns of U, with each column rep-
resenting a word. The RNN is trained with back-
propagation to maximize the data log-likelihood un-
der the model. The model itself has no knowledge
of syntax or morphology or semantics. Remark-
ably, training such a purely lexical model to max-
imize likelihood will induce word representations
with striking syntactic and semantic properties.

4 Measuring Linguistic Regularity

4.1 A Syntactic Test Set
To understand better the syntactic regularities which
are inherent in the learned representation, we created
a test set of analogy questions of the form “a is to b
as c is to ” testing base/comparative/superlative
forms of adjectives; singular/plural forms of com-
mon nouns; possessive/non-possessive forms of
common nouns; and base, past and 3rd person
present tense forms of verbs. More precisely, we
tagged 267M words of newspaper text with Penn

747

w(t) s(t) y(t)

Word vectors: recurrent net for training

Mikolov, Yih, Zweig 2013

input word at time t
(one-hot; dimension D=

size of dictionary)

predicted next word
(probabilities for each word in vocab.;

dimension D)

U matrix (NxD) contains word vectors!

SOFTMAXsigmoid

NxD NxN

dim. N

DxN

Word vectors: how to train them

Noise-contrastive estimation: provide
a few noisy (wrong) examples, and
train the model to predict that they
are fake (but that the true one is
correct)!

Predicting the probability of any word in
the dictionary, given the context words
(most recent word): very expensive!

Alternative:

Word vectors: how to train them

Context words word

context wordsword

“continuous bag of words”

“skip-gram”

Two approaches:

the quick brown fox jumped over the lazy dog
Example dataset:

word context words (here: just surrounding words)
quick the, brown
over jumped, the
lazy the, dog
... ...

At each time-step: go down the
gradient of

C(t) = lnP✓(wt, h) +
X

w̃

ln(1� P✓(w̃, h))

noisy examples

prob. that w is the correct word,
given the context word h

Model tries to predict:
P✓(w, h)

parameters of the model, i.e. weights, biases,
and entries of embedding vectors

Word vectors: how to train them

P✓(w, h) = �(Wjkek(h) + bj)
j: index for word w in dictionary
k: index in embedding vector [Einstein sum]
e(h): embedding vector for word h
W,b: weights, biases

Word vectors encode meaning

Mikolov, Yih, Zweig 2013

car-cars ~ tree-trees
(subtracting the word vectors on each
side yields approx. identical vectors)

“car”

“cars”
“tree”

“trees”

Word vectors encode meaning

Mikolov, Yih, Zweig 2013

“man”

“woman”

“uncle”

“aunt”

“king”

“queen”

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Country and Capital Vectors Projected by PCA
China

Japan

France

Russia

Germany

Italy

Spain
Greece

Turkey

Beijing

Paris

Tokyo

Poland

Moscow

Portugal

Berlin

Rome
Athens

Madrid

Ankara

Warsaw

Lisbon

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

which is used to replace every logP (wO|wI) term in the Skip-gram objective. Thus the task is to
distinguish the target word wO from draws from the noise distribution Pn(w) using logistic regres-
sion, where there are k negative samples for each data sample. Our experiments indicate that values
of k in the range 5–20 are useful for small training datasets, while for large datasets the k can be as
small as 2–5. The main difference between the Negative sampling and NCE is that NCE needs both
samples and the numerical probabilities of the noise distribution, while Negative sampling uses only
samples. And while NCE approximately maximizes the log probability of the softmax, this property
is not important for our application.

Both NCE and NEG have the noise distributionPn(w) as a free parameter. We investigated a number
of choices for Pn(w) and found that the unigram distribution U(w) raised to the 3/4rd power (i.e.,
U(w)3/4/Z) outperformed significantly the unigram and the uniform distributions, for both NCE
and NEG on every task we tried including language modeling (not reported here).

2.3 Subsampling of Frequent Words

In very large corpora, the most frequent words can easily occur hundreds of millions of times (e.g.,
“in”, “the”, and “a”). Such words usually provide less information value than the rare words. For
example, while the Skip-gram model benefits from observing the co-occurrences of “France” and
“Paris”, it benefits much less from observing the frequent co-occurrences of “France” and “the”, as
nearly every word co-occurs frequently within a sentence with “the”. This idea can also be applied
in the opposite direction; the vector representations of frequent words do not change significantly
after training on several million examples.

To counter the imbalance between the rare and frequent words, we used a simple subsampling ap-
proach: each word wi in the training set is discarded with probability computed by the formula

P (wi) = 1−

√

t

f(wi)
(5)

4

Word vectors encode meaning

Mikolov et al. 2013 ”Distributed Representations of Words and Phrases and their Compositionality”

Word vectors in keras

=

embedding_layer = Embedding(len(word_index) + 1,
 EMBEDDING_DIM,
 input_length=MAX_SEQUENCE_LENGTH)

Layer for mapping word indices (integer numbers representing
position in a dictionary) to word vectors (of length
EMBEDDING_DIM), for input sequences of some given length

Helper routines for converting actual text into a sequence of
word indices. See especially:

Tokenizer
pad_sequences
(and others)

Text Preprocessing
Sequence Preprocessing

Keras documentationfunction/class

Search for “GloVe word embeddings”: 800 MB database
pre-trained on a 2014 dump of the English Wikipedia,
encoding 400k words in 100-dimensional vectors

Reinforcement Learning

Im
ag

e:
 W

ik
ip

ed
ia

Reinforcement learning

Self-driving cars, robotics:
Observe immediate environment & move
Games:
Observe board & place stone
Observe video screen & move player

Challenge: the “correct” action is not known!
Therefore: no supervised learning!

Reward will be rare (or decided only at end)

“agent” “environment”

observation

action

fully observed vs.
partially observed
“state” of the
environment

Reinforcement learning

Challenge: We could use the final reward to define a cost
function, but we cannot know how the environment
reacts to a proposed change of the actions that were
taken!

Training a network to produce actions based on rare
rewards (instead of being told the ‘correct’ action!)

Use reinforcement learning:

(unless we have a model of the environment)

“State”=full map
“Action”=move
Reward e.g. based on
how many
“treasures” were
collected

player

“treasure”

Policy Gradient
=REINFORCE (Williams 1992): The simplest model-free
general reinforcement learning technique

Basic idea: Use probabilistic action choice. If the
reward at the end turns out to be high, make
all the actions in this sequence more likely
(otherwise do the opposite)
This will also sometimes reinforce ‘bad’
actions, but since they occur more likely in
trajectories with low reward, the net effect will
still be to suppress them!

player

“treasure”

Policy Gradient

Probability to take action a, given the current state s
⇡✓(a|s)

Probabilistic policy:

parameters of the network

Environment: makes (possibly stochastic) transition to a new state
s’, and possibly gives a reward r

P (s0|s, a)Transition function

down
up
left
right

0.1
0.6
0.2
0.1

as π
π

Policy Gradient

Probability for having a certain trajectory of actions
and states: product over time steps

Expected overall reward: sum over all trajectories
reward for this sequence (sum over
individual rewards r for all times)R̄ = E[R] =

@R̄

@✓
=?

Try to maximize expected reward by changing
parameters of policy:

a = a0, a1, a2, . . .
s = s1, s2, . . . (state 0 is fixed)

trajectory:

sum over all actions at all times
and over all states at all times >0

⌧ = (a, s)

X

⌧

P✓(⌧)R(⌧)

X

⌧

. . . =
X

a0,a1,a2,...,s1,s2,...

. . .

P✓(⌧) = ⇧tP (st+1|st, at)⇡✓(at|st)

Policy Gradient

@ ln⇡✓(at|st)
@✓

@R̄

@✓
=

X

t

E[R
@ ln⇡✓(at|st)

@✓
]

�✓ = ⌘
@R̄

@✓

Main formula of policy gradient method:

E[. . .]

Stochastic gradient descent:

where is approximated via the
value for one trajectory (or a batch)

@R̄

@✓
=

X

t

X

⌧

R(⌧)
@⇡✓(at|st)

@✓

1

⇡✓(at|st)
⇧t0P (st0+1|st0 , at0)⇡✓(at0 |st0)

Policy Gradient

Increase the probability of all action choices in the
given sequence, depending on size of reward R.
Even if R>0 always, due to normalization of probabilities
this will tend to suppress the action choices in
sequences with lower-than-average rewards.

@R̄

@✓
=

X

t

E[R
@ ln⇡✓(at|st)

@✓
]

@R̄

@✓k
= E[RGk]

Gk =
@ lnP✓(⌧)

@✓k
=

X

t

@ ln⇡✓(at|st)
@✓k

Abbreviation:

Policy Gradient: reward baseline

Challenge: fluctuations of estimate for reward gradient
can be huge. Things improve if one subtracts a constant
baseline from the reward.

@R̄

@✓
=

X

t

E[(R� b)
@ ln⇡✓(at|st)

@✓
]

This is the same as before. Proof:

However, the variance of the fluctuating random
variable (R-b)G is different, and can be smaller
(depending on the value of b)!

= E[(R� b)G]

E[Gk] =
X

⌧

P✓(⌧)
@ lnP✓(⌧)

@✓k
=

@

@✓k

X

⌧

P✓(⌧) = 0

E[Gk] =
X

⌧

P✓(⌧)
@ lnP✓(⌧)

@✓k
=

@

@✓k

X

⌧

P✓(⌧) = 0

Gk =
@ lnP✓(⌧)

@✓k

�✓k = �⌘E[Gk(R� bk)]

bk =
E[G2

kR]

E[G2
k]

Xk = (R� bk)Gk

Var[Xk] = E[X2
k]� E[Xk]

2 = min

@Var[Xk]

@bk
= 0

Optimal baseline

Backpropagation
Fu

nc
tio

n/
Im

ag
e

re
pr

es
en

ta
tio

n
Im

ag
e

cla
ss

ific
at

io
n

[H
an

dw
rit

ing
 re

co
gn

iti
on

]

Con
vo

lut
io

na
l n

et
s

Aut
oe

nc
od

er
s

Vi
su

ali
za

tio
n

by

dim
en

sio
na

l r
ed

uc
tio

n

Re
cu

rr
en

t n
et

wor
ks

W
or

d
ve

ct
or

s
Re

inf
or

ce
m

en
t l

ea
rn

ing

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

For more in-depth treatment, see David Silver’s course on
reinforcement learning (University College London):

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

The simplest RL example ever

A random walk, where the probability to go “up” is
determined by the policy, and where the reward is
given by the final position (ideal strategy: always go up!)
(Note: this policy does not even depend on the current state)

time

po
si

tio
n

re
w

ar
d

The simplest RL example ever

A random walk, where the probability to go “up” is
determined by the policy, and where the reward is
given by the final position (ideal strategy: always go up!)
(Note: this policy does not even depend on the current state)

R = x(T)⇡✓(up) =
1

1 + e�✓
policy reward

�✓ = ⌘
X

t

⌧
R
@ ln⇡✓(at)

@✓

�
RL update

at = up or down

@ ln⇡✓(at)

@✓
= ±e�✓⇡✓(at) = ±(1� ⇡✓(at))

+ for up, - for down 1� ⇡✓(up)
�⇡✓(up)

= for up
for down

X

t

@ ln⇡✓(at)

@✓
= Nup �N⇡✓(up)

N=number of time steps

number of ‘up-steps’

The simplest RL example ever

R = x(T)reward

�✓ = ⌘
X

t

⌧
R
@ ln⇡✓(at)

@✓

�
RL update

at = up or down

= N
up

�N
down

= 2N
up

�N

*
R
X

t

@ ln⇡✓(at)

@✓

+
= 2

⌧
(Nup � N

2
)(Nup � N̄up)

�

Initially, when ⇡✓(up) =
1

2

�✓ = 2⌘

⌧
(Nup � N

2
)2
�

= 2⌘Var(Nup) = ⌘
N

2
> 0

(binomial distribution!)

:

(general analytical expression for
average update, rare)

The simplest RL example ever

*
R
X

t

@ ln⇡✓(at)

@✓

+
= 2

⌧
(Nup � N

2
)(Nup � N̄up)

�

= 2

⌧✓
(Nup � N̄up) + (N̄up � N

2
)

◆
(Nup � N̄up)

�

= 2VarNup + 2(N̄up � N

2
)
⌦
Nup � N̄up

↵

= 2VarNup = 2N⇡✓(up)(1� ⇡✓(up))

⇡✓(up)

⇡
✓
(u
p
)(
1
�
⇡
✓
(u
p
))

In general:

(general analytical
expression for average
update, fully simplified,
extremely rare)

The simplest RL example ever

trajectory (=training episode)

pr
ob

ab
ili

ty

3 learning attempts

strong fluctuations!

(This plot for N=100 time steps in a
trajectory; eta=0.001)

⇡
✓
(u
p
)

Spread of the update step

Y = Nup � N̄up c = N̄up �N/2 X = (Y + c)Y

p
Var(X)

⇡✓(up)

⇠ N1

⇠ N
3
2

(This plot for N=100)

X=update
(except
prefactor of 2)

hXi

(Note: to get Var X, we need central moments
of binomial distribution up to 4th moment)

Optimal baseline suppresses spread!

Y = Nup � N̄up c = N̄up �N/2 X = (Y + c)Y

p
Var(X)

hXi

⇡✓(up)

⇠ N1

⇠ N
3
2

(This plot for N=100)

X 0 = (Y + c� b)Y b =

⌦
Y 2(Y + c)

↵

hY 2i

with optimal baseline:

p
Var(X 0)

�X =
MX

j=1

Xj

h�Xi = M hXi
p
Var�X =

p
M

p
VarX

⇠ 1p
M

Note: Many update steps reduce relative spread

relative spread
p
Var�X

h�Xi

M = number of update steps

Homework

Implement the RL update including the optimal
baseline and run some stochastic learning
attempts. Can you observe the improvement
over the no-baseline results shown here?

Note: You do not need to simulate the individual
random walk trajectories, just exploit the
binomial distribution.

The second-simplest RL example

po
si

tio
n

time

“target site”

“walker”

reward=number of time steps on target

See code on website: “SimpleRL_WalkerTarget”

actions: move or stay

RL in keras: categorical cross-entropy trick

output = action
probabilities (softmax)

⇡✓(a|s)
a=0 a=1 a=2

input = state

C = �
X

a

P (a) ln⇡✓(a|s)

P (a) = R

P (a) = 0

Set

for a=action that was taken

for all other actions a

�✓ = �⌘
@C

@✓
implements policy gradient

categorical cross-entropy

desired
distribution

distr. from net

“alpha-Go”

Among the major board games, “Go” was
not yet played on a superhuman level by any
program (very large state space on a 19x19
board!)
alpha-Go beat the world’s best player in 2017

“alpha-Go”

First: try to learn from human expert players

Silver et al.,“Mastering the game of Go with deep neural networks
and tree search” (Google Deepmind team), Nature, January 2016

“alpha-Go”

Second: use policy gradient RL on games played
against previous versions of the program

Silver et al.,“Mastering the game of Go with deep neural networks
and tree search” (Google Deepmind team), Nature, January 2016

“alpha-Go”

Silver et al.,“Mastering the game of Go with deep neural networks
and tree search” (Google Deepmind team), Nature, January 2016

“alpha-Go”

Silver et al.,“Mastering the game of Go with deep neural networks
and tree search” (Google Deepmind team), Nature, January 2016

Q-learning

Introduce a quality function Q that predicts the
future reward for a given state s and a given
action a. Deterministic policy: just select
the action with the largest Q!

An alternative to the policy gradient approach

player &
possible
actions

Q maximal

Q-learning

Introduce a quality function Q that predicts the
future reward for a given state s and a given
action a. Deterministic policy: just select
the action with the largest Q!

Q(st, at) = E[Rt|st, at]

Rt =
TX

t0=t

rt0�
t0�t

“Discounted”
future reward:

0 < � 1Discount factor:
Reward at time step t: rt

(assuming future
steps to follow the
policy!)

How do we obtain Q?

learning somewhat
easier for smaller
factor (short
memory times)

depends on state
and action at time t

Note: The ‘value’ of a state is V (s) = maxaQ(s, a)

Q-learning: Update rule

Bellmann equation: (from optimal control theory)

In practice, we do not know the Q function yet, so
we cannot directly use the Bellmann equation.
However, the following update rule has the correct Q
function as a fixed point:

Qnew

(st, at) = Qold

(st, at) + ↵(rt + �maxaQ
old

(st+1

, a)�Qold

(st, at))

will be zero, once
we have converged
to the correct Qsmall (<1) update

factor

If we use a neural network to calculate Q, it will be
trained to yield the “new” value in each step.

Q(st, at) = E[rt + �maxaQ(st+1, a)|st, at]

Q(a=up,s)

Q(a=up,s)

Q(a=up,s)

Q-learning: Exploration

Initially, Q is arbitrary. It will be bad to follow this Q all
the time. Therefore, introduce probability of
random action (“exploration”)!

✏

✏-greedy“ “

Reduce this randomness later!

Follow Q: “exploitation”
Do something random (new): “exploration”

Example: Learning to play Atari Video Games

last four 84x84 pixel images as input [=state]
motion as output [=action]

“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015

“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015

Example: Learning to play Atari Video Games

“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015

Example: Learning to play Atari Video Games

t-SNE visualization of
last hidden layer

Fu
nc

tio
n/

Im
ag

e

re
pr

es
en

ta
tio

n
Im

ag
e

cla
ss

ific
at

io
n

[H
an

dw
rit

ing
 re

co
gn

iti
on

]

Con
vo

lut
io

na
l n

et
s

Aut
oe

nc
od

er
s

Vi
su

ali
za

tio
n

by

dim
en

sio
na

l r
ed

uc
tio

n

Re
cu

rr
en

t n
et

wor
ks

W
or

d
ve

ct
or

s

Re
inf

or
ce

m
en

t l
ea

rn
ing

Con
ne

ct
io

ns
 to

 p
hy

sic
s

Neural networks and spin models

Artifical
neuron

Bit

0/1

Spin

/

Neural networks with stochastic transitions,
and with some energy functional similar to
spin models in physics; e.g. as described by
Hopfield and others starting from the 80s

Modeling probability distributions

Goal: Use a neural network to generate previously
unseen examples, according to the probability
distribution of training samples

One example already mentioned in these lectures: generating new
random (but kind-of reasonable) text after seeing lots of it

Example: Generate new images after looking at many,
generate handwritten text

The solution will exploit the connection between
neural networks and the statistical physics of spin
models!

Boltzmann-Gibbs distribution

P (s) =
1

Z
e�

E(s)
kBT Z =

X

s0

e�
E(s0)
kBT

probability for state s,
in thermal equilibrium

Z for normalization:
“partition function”

energy high: less likely energy low: more likely

Probabilities of states of a physical system,
in thermal equilibrium?

Problem: for a many-body system, exponentially many states (for
example 2N spin states). Cannot go through all of them!

Monte Carlo approach

...

...
P (s s 0)

P (s 0 s) s

s0

Place system in some state,
make stochastic transitions to
other states (with prescribed
transition probabilities)

Monte Carlo approach

...

...
P (s s 0)

P (s 0 s) s

s0

�P (s) =
X

s0

P (s s0)P (s0)� P (s0 s)P (s)

Time evolution of ensemble?

change in one
time-step

P(s) = probability to find the
system in state s (or: fraction
of ensemble in this state)

“IN” “OUT”

Monte Carlo approach

...

...
P (s s 0)

P (s 0 s) s

s0

At long times: stable steady state distribution
If we have “detailed balance”, i.e. if there exists a
distribution P(s), such that for any pair of states:

P (s s0)

P (s0 s)
=

P (s)

P (s0)

then P(s) is the long-time distribution!

Monte Carlo approach

...

...
P (s s 0)

P (s 0 s) s

s0

Monte Carlo for thermal equilibrium: choose
transition probabilities such that P(s) will be the
Boltzmann distribution!

P (s s0)

P (s0 s)
= e

E(s0)�E(s)
kBT

example Metropolis algorithm: pick random spin, calculate
energy change for spin flip. Do the flip if it lowers the energy. If
the energy increases, only flip with probability exp(��E/kBT)

Markov chain

The sequence of visited states forms a
so-called “Markov chain”

s0

s1

s2

s3

Markov = transitions without memory

Restricted Boltzmann Machine

“hidden” units h

“visible” units v

Each “unit” is like a spin (or a bit) that can be 0 or 1

Restricted Boltzmann Machine

“hidden” units h

“visible” units v

Each “unit” is like a spin (or a bit) that can be 0 or 1

Define “energy” (we will set kBT=1)

w: couplings (weights)

see G. Hinton’s guide: http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf

“restricted”: no coupling v-v or h-h

http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf

Restricted Boltzmann Machine

“hidden” units h

“visible” units v

Each “unit” is like a spin (or a bit) that can be 0 or 1

Goal: adapt weights (and biases), such that the
probability distribution of a set of training
examples is approximately reproduced by P(v)

P (v, h) =
e�E(v,h)

Z
Z =

X

v,h

e�E(v,h)

P (v) =
X

h

P (v, h)

P (v) ⇡ P0(v) from training samples

Restricted Boltzmann Machine

“hidden” units h

“visible” units v

Each “unit” is like a spin (or a bit) that can be 0 or 1

Interpretation: the ‘hidden units’ represent
categories of data (e.g. “dog+white+big”)

Building a Markov chain

P (h v) = P (h|v) = P (v, h)

P (v)

Instead of the full state s=(v,h): Consider alternating
transitions between v and h states

Set:

P (v h) = P (v|h) = P (v, h)

P (h)

v

h

v0 v00

h0

P (h v)

P (v h)
=

P (h)

P (v)

These transition probabilities fulfill detailed balance!
Thus: P(v) [and P(h)] are the
steady-state distributions!

“reconstruction”

Building a Markov chain

P (v) =
X

h

e�E(v,h) =
X

h

e
P

i aivi+
P

j bjhj+
P

i,j vihjwij

X

h

. . . =
X

h0=0,1

X

h1=0,1

X

h2=0,1

. . .

= e
P

i aivi⇧j(1 + ezj)

e
P

j Xj = ⇧je
Xjwhere we used:

with:

ZP (v)

P (h|v) = e�E(v,h)

ZP (v)
= ⇧j

ezjhj

1 + ezj

P (hj = 1|v) = ezj

1 + ezj
= �(zj)

P (hj = 0|v) = 1� �(zj)

Product of probabilities! All the hj are independently
distributed, with probabilities:

sigmoid

zj = bj +
X

i

viwij

Therefore:

Building a Markov chain

P (hj = 1|v) = ezj

1 + ezj
= �(zj)

sigmoid

Given some visible-units state vector v, calculate
the probabilities

Then assign 1 or 0, according to these probabilities,
to obtain the new hidden state vector h

Similarly, go from h to a new v’, using:

z0i = ai +
X

j

wijhj

P (v0i = 1|h) = �(z0i)

Updating the weights

Goal: adapt weights (and biases), such that the
probability distribution of a set of training
examples is approximately reproduced by P(v)

P (v) ⇡ P0(v) from training samples

C = �
X

v

P0(v) lnP (v)

Minimize the categorical cross-entropy

But now (unlike earlier examples), there are
exponentially many values for v, so we cannot
simply have a network output P(v) for all v.
Still, let us take the derivative of C with respect
to the weights w!

Updating the weights

C = �
X

v

P0(v) lnP (v)

@

@wij
lnP (v) =

@
@wij

P
h P (v, h)

P
h P (v, h)

=
@

@wij

P
h e

�E(v,h)

P
h e

�E(v,h)
�

@
@wij

1
Z

1
Z

Z =
X

v0,h0

e�E(v0,h0)

=

P
h vihje�E(v,h)

P
h e

�E(v,h)
�

P
v0,h0 v0ih

0
je

�E(v0,h0)

Z

X

v

P0(v)
@

@wij
lnP (v) =

X

v,h

vihjP (h|v)P0(v)�
X

v0,h0

v0ih
0
jP (v0, h0)

overall:

Updating the weights

easy: draw one training
sample v, then do one
Markov chain step from v to
h; average over all samples v

hard: need to average over
the correct distribution P(v)
belonging to the Boltzmann
machine!

X

v

P0(v)
@

@wij
lnP (v) =

X

v,h

vihjP (h|v)P0(v)�
X

v0,h0

v0ih
0
jP (h0|v0)P (v0)

Updating the weights

Could obtain P(v) by running the Markov chain for
really long times! Very expensive!

X

v

P0(v)
@

@wij
lnP (v) =

X

v,h

vihjP (h|v)P0(v)�
X

v0,h0

v0ih
0
jP (h0|v0)P (v0)

v

h

v0 v00

h0

Rough approximation, used in practice: Just take v’,h’
from the second pair of the chain! [For better
approx.: can take a pair further down the chain]

�wij = ⌘(hvihji �
⌦
v0ih

0
j

↵
)

(v: training sample)

(averaged over a batch of training samples v starting the chain)

Updating the weights

�wij = ⌘(hvihji �
⌦
v0ih

0
j

↵
)

(averaged over a batch of training samples v starting the chain)
“Contrastive Divergence” (CD) algorithm by G. Hinton

Note: At least we can claim that P0(v) = P (v)
would be a fixed point of this update rule, since then the two
averages on the right-hand-side yield identical results. Of
course, usually the restricted Boltzmann machine will not be
able to reach this point, since it cannot represent arbitrary
P(v).

�ai = ⌘(hvii � hv0ii)

�bj = ⌘(hhji �
⌦
h0
j

↵
)

Restricted Boltzmann Machine for MNIST
example from http://deeplearning.net/tutorial/rbm.html

M
ar

ko
v

ch
ai

n
st

ep
s

(1
00

0
st

ep
s

be
tw

ee
n

ea
ch

 r
ow

!)

Each column: a different, independent Markov chain

Restricted Boltzmann Machine for MNIST
example from http://deeplearning.net/tutorial/rbm.html

The learned weights for the 100 hidden units

RBM as a starting point

“hidden” units h

“visible” units v

output layer
(e.g. softmax)

First train RBM, then connect hidden layer to some
output layer for supervised learning of classification
Idea: RBM provides unsupervised learning of
important features in the training set (pre-training)

Deep belief networks

hidden units h1

visible units v

Stack RBMs: First train a simple RBM, then use its
hidden units as input to another RBM, and so on

hidden units h2

hidden units h3

first RBM

second RBM

third RBM

Afterwards, fine-tune weights,
e.g. by supervised learning

Application to Quantum Physics

“hidden” units h

“visible” units v

Try to solve a quantum many-body problem (quantum spin
model) using the following variational ansatz for the wave
function amplitudes:

 (S) =
X

h

e
P

j aj�
z
j+

P
i bihi+

P
ij hi�

z
jWij

S = (�z
1 ,�

z
2 , . . . ,�

z
N)

�z
j = ±1

hi = ±1

=spins of quantum model

one basis state in the many-body Hilbert space

(in general, a,b, W may be complex)

This is exactly (proportional to) the RBM representation
for P(v) [with v=S]!

Carleo & Troyer, Science 2017

Application to Quantum Physics

“hidden” units h

“visible” units v
=spins of quantum model

Minimize the energy
D
 |Ĥ|

E

h | i
by adapting the weights W and biases a and b!
[requires additional Monte Carlo simulation, to obtain a
stochastic sampling of the gradient with respect to these
parameters]
For example: sample probabilities by using Metropolis
algorithm, with transition probabilities

P (S 0 S) = min(1,

����
 (S 0)

 (S)

����
2

)

Application to Quantum Physics

Carleo & Troyer, Science 2017

Exploit translational invariance (like in convolutional
nets); weights are “filters” (convolutional kernels)

er
ro

r

number of ‘filters’

http://machine-learning-for-physicists.org

Find updates on

http://machine-learning-for-physicists.org
http://machine-learning-for-physicists.org

